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PREFACE

Bioinformatics is an interdisciplinary field comprising of biology, statistics and
computer sciences. During the last two decades enormous sequence data have been
generated in biological science, firstly with the onset of sequencing the genomes of
living organisms and, secondly, rapid application of high throughput experimental
techniques in laboratory research. Application of various bioinformatics tools in
biological research enables storage, retrieval, analysis, annotation and visualization
of results and promotes better understanding of biological systems in their entirety.
This will further lead to development of tools and techniques for sustainable
agriculture. The aim of this training is to provide an overview of transcriptomic data
analysis and its applications in agriculture to Scientific/ Technical/ Contractual
Research Personnel working in NARES. This training programme is mainly focused

on transcriptomic data analysis.

This training has been formulated with following objectives:
e To familiarize the participants with the concepts of transcriptomic data analysis
using bioinformatics tools and techniques
e To illustrate the above through lectures and demonstrations with suitable

example data

In this training programme, lectures related to (1) Introduction to Linux and R, (2) Text
Analytics in Omics Data, (3) NGS Data Generation: Techniques, Issues and
Challenges, (4) NGS Data: Pre-processing, Assembly and Quantification, (5)
Annotation of RNA-Seq Data, (6) Bulk and Single-Cell RNA-Seq Data Analysis, and

(7) microRNA Identification and Target Prediction, have been included.

We express our gratitude to Dr. Rajender Parsad (Director, ICAR-IASRI) and Dr.
Girish Kumar Jha (Head, Division of Agricultural Bioinformatics) for the support and

cooperation in organizing this program.

Authors
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Overview of Linux Basics
S. B. Lal
ICAR-Indian Agricultural Statistics Research Institute, New Delhi

The Linux operating system is basically a variant of the UNIX operating system, and
Linux has probably all that UNIX offers and more. It is a multi-user, multitasking,
network operating system which also has a user friendly Graphical User Interface
(GUI).

Every desktop computer uses an operating system. The most popular operating systems
are Windows, Mac OS, UNIX, Linux.

What is an Operating System?

An operating system is the first piece of software that the computer executes when a
system is turned on. The operating system loads itself into memory and begins
managing the resources available in the computer. It provides those resources to other
applications that the user wants to run. Typical services that an operating system
provides include:

A task scheduler - The task scheduler is able to allocate the execution of the CPU to a
number of different tasks. Some of those tasks are the different applications that the
user is running, and some of them are operating system tasks.

A memory manager - The memory manager controls the system’s RAM and normally
creates a larger virtual memory space using a file on the hard disk.

A disk manager - The disk manager creates and maintains the directories and files on
the disk. When a file is needed, the disk manager makes it available from the disk.

A network manager - The network manager controls all data moving between the
computer and the network.

Other 1/0 services manager - The OS manages the keyboard, mouse, video display,
printers, etc.

Security manager - The OS maintains the security of the information in the computer’s
files and controls who can access the computer.

An operating system normally also provides the default user interface for the system.
The standard “look” of Windows 98 includes the Start button, the task bar, etc. The
Mac OS provides a completely different look and feel for Macintosh computers.

To understand why Linux has become so popular, it is helpful to know a little bit about
its history.

Background on Linux

Linux, a UNIX-like operating system, is based on Minix and has been invented by Linus
Benedict Torvalds in 1991. The following is an excerpt of a newsgroup, called
“comp.os.minix” where Linus posted this text on 08/01/91: *“...As [ mentioned a month
ago, I’'m working on a free version of a Minix-look-alike for AT-386 computers. It has
finally reached the stage where it’s even usable (though may not be, depending on what
you want), and I am willing to put out the sources for wider distribution. It is just version
0.02... but I’ve successfully run bash, gcc, gnu-make, gnu-sed, compress, etc. under it.”



Linux is a free version of UNIX that continues to be developed by the cooperative
efforts of volunteer groups of programmers, primarily on the Internet, who exchange
code, report bug, and fix problems in an open-ended environment. As a result, the world
now has a powerful, robust, and full-featured operating system that continues to change
and grow.

In other words, Linux is little bit harder to manage than something like Windows, but
offers more flexibility and configuration options.

Linux is licensed under the GPL (General Public license) from the GNU organization,
under which the kernel is provided with the source code, and is available for free. As a
result, Linux is considered to be more secure and stable than closed source or
proprietary systems like Windows because anyone can analyse the source code written
in the C language and find bugs or add new features. One important point that should
be noted is that even though the source is free, anyone is allowed to sell it for profit.

Linux is known as an open source operating system and also called free software
because everything about Linux is accessible to the public and is freely available to
anyone. Since the Linux source code is available, anyone can copy, modify, and
distribute this software. This allows for various companies such as SUSE, Red Hat,
Caldera and others to sell and distribute Linux; however, at the same time, these
companies must keep their Linux distribution code open for public inspection,
comment, and changes. Despite of the command-line origins of Linux, these
distributing companies are working to make the Graphical User Interface (GUI).

The GNU General Public License

To make software free, you need a license that defines the rights and the limits, that
have to be regarded by the open source developer that wants to obtain, edit and
eventually redistribute your source code. Because of that exists the GNU GPL (General
Public License). Of course, there are also other licenses, but today’s most open source
programs are distributed under this popular license.

The GNU project was started in 1984 and “GNU is recursive acronym for “GNU’s Not
Unix”; The Free Software Foundation, which stands for the freedom, the security and
the protection of free source code therefore founded this kind of license, designed to
protect open source code. GNU is also founder and maintainer of many software
packages for the Linux operating system, such as basic tools and file system software.

Is Linux Right for you?

It depends on you and what you would like to do. Linux is not an all-purpose operating
system and it would probably be more suited for some people and not so pleasing for
others. If you are a person using your computer for some entertainment at home and are
satisfied with your Windows system there are no compelling reasons for switching over
to Linux, but you do have a choice now. There are several other reasons to consider
Linux. Linux is not just a simple operating system. It is an entire server and desktop
environment, equipped with add-ons, GUI tools and interfaces, and supplementary
programs.

You can use Linux at home and even in college to understand the commands and even
the internal workings of UNIX systems.



Distributions

When people use the name Linux they are probably referring to a particular distribution
of Linux. There are several software packages provided for Linux over the Internet but
selecting and downloading one is a complicated task not necessarily manageable for
new users who want to try out Linux. This is exactly where a distribution kicks in.

A distribution is a set of software packages that are tested and provided on CD by a
company for a small fee just like Windows. The advantages of using distributions are
the support and manuals, as well as the fact that Linux can be specialized for use in a
particular area. For example, if you would like using Linux for embedded systems a
distribution may offer just the right amount of required software, leaving out optional
things like the graphical user interface. So you get what you want instead of a general
package for all users.

The mainstream distributions, which are seemingly popular, are RedHat, SUSE, Caldera
and Debian. Among these distributions RedHat seems to be most widespread.

Caldera is probably more suited for those who are already using Windows. SuSE is a
German based distribution known for its large number of bundled packages and
support. Debian is unique because its not owned by a company and it’s a non-profit
volunteer-based distribution developed solely by users.

Getting Started with Linux

Once the installation is complete, the system will reboot and start up with Linux. There
are a series of messages on the screen while booting of the system regarding the
hardware enabled, services started etc. After a while, the system will display a login:
prompt. You can now log in.

Some systems are configured to start graphical mode with a box in the middle
containing both login: and Password: prompts. Press [CTRL]-[ALT]-[F1] to switch to
the virtual console (text login screen), where you can log in to the system in the usual
way.

Accounts and Privileges

Linux is a multi-user system, meaning that many users can use one Linux system
simultaneously, from different terminals. So to avoid confusion, each user's workspace
must be kept separate from the others.

Even if a particular Linux system is a stand-alone personal computer with no other
terminals physically connected to it, it can be shared by different people at different
times, making the separation of user workspace is important.

This separation is accomplished by giving each individual user an account on the
system. You need an account in order to use the system; with an account you are issued
an individual workspace to use, and a unique username that identifies you to the system
and to other users. It is the name along with the password by which the system will
recognize the user.

Logging into the System

To begin a session on a Linux system, you need to log in. Do this by entering your
username at the login: prompt on your terminal, and then entering your password when
asked.



Every Linux system has its own name, called the system's hostname; a Linux system is
sometimes called a host, and it identifies itself with its hostname at the login: prompt.
It's important to name your system -- like a username for a user account, a hostname
gives name to the system you are using (and it becomes especially important when
putting the system on a network). The system administrator usually names the system
when it is being initially configured (the hostname can be changed later; its name is
kept in the file “/etc/hostname’). The name of the terminal you are connecting from is
displayed just after the hostname.

To log in to the system, type your username (followed by) at the login: prompt, and
then type your password when asked (also followed by); for security purposes, your
password is not displayed on the screen when you type it.

Once you've entered your username and password, you are "logged in" to the system.
You can then use the system and run commands.

As soon as you log in, the system displays the contents of “/etc/motd’, the "Message of
the Day" file. The system then displays the time and date of your last login, and reports
whether or not you have electronic mail waiting for you. Finally, the system puts you
in a shell---the environment in which you interact with the system and give it
commands. Bash is the default shell on most Linux systems.

The dollar sign (°$") displayed to the left of the cursor is called the shell prompt; it
means that the system is ready and waiting for input. By default, the shell prompt
includes the name of the current directory.

Logging Out of the System

To end your session on the system, type logout at the shell prompt. This command logs
you out of the system, and a new login: prompt appears on your terminal.

e To log out of the system
$ logout
You can also logout by just pressing Ctrl+d.

Logging out of the system frees the terminal you were using and ensures that nobody
can access your account from this terminal.

Console Basics

A Linux terminal is a place to put input and get output from the system, and usually has
at least a keyboard and monitor.

When you access a Linux system by the keyboard and monitor that are directly
connected to it, you are said to be using the console terminal.

Linux systems feature virtual consoles, which act as separate console displays that can
run separate login sessions, but are accessed from the same physical console terminal.
Linux systems are configured to have seven virtual consoles by default. When you are
at the console terminal, you can switch between virtual consoles at any time, and you
can log in and use the system from several virtual consoles at once.

Switching Between Consoles

To switch to a different virtual console, press [ALT]-[Fn], where n is the number of
the console to switch to.

o To switch to the fourth virtual console, press [ALT]-[F4].



You can also cycle through the different virtual consoles with the left and right arrow
keys. To switch to the next-lowest virtual console, press [ALT]-[«]and to the next-
highest virtual console, press [ALT]-[—].

e To switch from the fourth to the third virtual console, press [ALT]-[«]

The seventh virtual console is reserved for the X Window System. If X is installed, this
virtual terminal will never show a login: prompt, but when you are using X, this is
where your X session appears. If your system is configured to start X immediately, this
virtual console will show an X login screen.

You can switch to a virtual console from the X Window System using [CTRL] in
conjunction with the usual [ALT] and function keys. This is the only console
manipulation keystroke that works in X.

e To switch from X to the first virtual console, press: [CTRL]-[ALT]-[F1]
Running a Command

A command is the name of a tool that performs a certain function along with the options
and arguments. Commands are case sensitive.

To run the hostname command just type the command in front of prompt (3$)
$ hostname

Options always begin with a hyphen character, -', which is usually followed by one
alphanumeric character. Always separate the command, each option, and each
argument with a space character.

Long-style options begin with two hyphen characters ("--").

For example, many commands have an option, “--version', to output the version number
of the hostname.

$ hostname --version

Sometimes, an option itself may take an argument. For example, hostname has an
option for specifying a file name to use to read the hostname from, “-F'; it takes as an
argument the name of the file that hostname should read from. To run hostname and
specify that the file "host.info' is the file to read from

$ hostname -F host.info

Changing Your Password

To change your password, use the passwd command. It prompts you for your current
password and a new password to replace it with. You must type it exactly the same way
both times, or passwd will not change your password.

$ passwd username

Listing Your Username

Use whoami to output the username of the user that is logged in at your terminal.
$ whoami

Listing Who Is on the System

Use who to output a list of all the users currently logged in to the system. It outputs a
minimum of three columns, listing the username, terminal location, and time of login



for all users on the system. A fourth column is displayed if a user is using the X Window
System.

$ who

abc ttyl Oct 20 20:09

def tty2 Oct 21 14:37

def ttypl Oct 21 15:04 (:0.0)

$

The output in this example shows that the user abc is logged in on ttyl (the first virtual
console on the system), and has been on since 20:09 on 20 October. The user def is
logged in twice -- on tty2 (the second virtual console), and ttypl, which is an X session
with a window location of *(:0.0)".

Listing the Last Times a User Logged In

Use last to find out who has recently used the system, which terminals they used, and
when they logged in and out.

$ last abc
Listing System Activity

When you run a command, you are starting a process on the system, which is a program
that is currently executing. Every process is given a unique number, called its process
ID, or "PID."

Use ps to list processes on the system. By default, ps outputs 5 columns: process ID,
the name of the terminal from which the process was started, the current status of the
process (including °S' for sleeping, meaning that it is on hold at the moment, 'R’
meaning that it is running, and “Z' meaning that it is a process that has already died),
the total amount of time the CPU has spent on the process since the process started, and
finally the name of the command being run.

Listing Your Current Processes

Type ps with no arguments to list the processes you have running in your current shell
session.

$ ps
PID TTY STAT TIME COMMAND
193 1S 0:01 -bash
204 1S 0:00ps
$
Listing All of a User's Processes

To list all the running processes of a specific user, use ps and give the username to list
as an argument with the “-u' option.

$ ps -u abc

Listing All Processes on the System

To list all processes running by all users on the system, use the “aux’ options.
$ ps aux



Listing Processes by Name or Number

To list processes whose output contains a name or other text to match, list all processes
and pipe the output to grep. This is useful for when you want to see which users are
running a particular program or command.

To list all the processes whose commands contain reference to an “shin' directory in
them

$ ps aux | grep shin
To list any processes whose process IDs contain a 13 in them
$ ps aux | grep 13

To list the process, which corresponds to a process 1D, give that PID as an argument to
the “-p' option (PID is 344 )

$ ps -p 344
Finding the System Manual of a Command

Use the man command to view a page in the system manual. As an argument to man,
give the name of the program whose manual page you want to view.

$ man ps

Use the up and down arrow keys to move through the text. Press [Q] to stop viewing
the manual page and exit man.

Working with Shell

Shell is a program that reads your command input and runs the specified commands.
The shell environment is the most fundamental way to interact with the system -- you
are said to be in a shell from the very moment you've successfully logged in to the
system.

The "$' character preceding the cursor is called the shell prompt; it tells you that the
system is ready and waiting for input.

If your shell prompt shows a number sign (‘#') instead of a *$', this means that you're
logged in with the superuser, or root, account. Beware: the root account has complete
control over the system; one wrong keystroke and you might accidentally break it
something awful. You need to have a different user account for yourself, and use that
account for your regular use.

Every Linux system has at least one shell program, and most have several. The standard
shell on most Linux systems is bash( "Bourne again shell™).

Running a List of Commands

To run more than one command on the input line, type each command in the order you
want them to run, separating each command from the next with a semicolon (°;"). For
example, to clear the screen and then log out of the system

$ clear; logout
Redirecting Input and Output

The shell moves text in designated "streams.” The standard output is where the shell
streams the text output of commands -- the screen on your terminal, by default. The



standard input, typically the keyboard, is where you input data for commands. You can
redirect these streams -- to a file, or even another command -- with redirection.

Redirecting Input to a File

To redirect standard input to a file, use the “<' operator. To do so, follow a command
with < and the name of the file it should take input from. For example, to redirect
standard input for Is -1 to file “listing'

$ Is -l < listing
Redirecting Output to a File

Use the ">' operator to redirect standard output to a file. If you redirect standard output
to an existing file, it will overwrite the file, unless you use the ">>" operator to append
the standard output to the contents of the existing file. For example, to append the
standard output of Is -1 to an existing file ‘commands'

$ Is -I>> commands
Redirecting Output to another Command's Input

Piping is to connect the standard output of one command to the standard input of
another. You do this by specifying the two commands in order, separated by a vertical
bar character, *|' (also called as a "pipe"). Commands built in this fashion are called
pipelines.

For example, it's often useful to pipe commands that display a lot of text output to more
for perusing text.To pipe the output of apropos bash shell shells to less

$1Is—I | more
Managing Jobs

The processes you have running in a particular shell are called your jobs. You can have
more than one job running from a shell at once, but only one job can be active at the
terminal, reading standard input and writing standard output. This job is the foreground
job, while any other jobs are said to be running in the background.

The shell assigns each job a unique job number. Use the job number as an argument to
specify the job to commands. Do this by giving the job number preceded by a "%'
character.

Suspending a Job

Type Ctrl+z to suspend or stop the foreground job. This is useful when you want to do
something else in the shell and return to the current job later. The job stops until you
either bring it back to the foreground or make it run in the background.

For example, if you are finding a file at Linux partition from root (/), typing Ctrl+z will
suspend the find program and return you to a shell prompt where you can do something
else. The shell outputs a line giving the job number (in brackets) of the suspended job,
the text "Stopped' to indicate that the job has stopped, and the command line itself, as
shown here:

[1]+ Stopped find / -name abc

In this example, the job number is 1 and the command that has stopped is “find / -name
abc'. The "+' character next to the job number indicates that this is the most recent job.



If you have any stopped jobs when you log out, the shell will tell you this instead of
logging you out:

$ logout

There are stopped jobs.

$
At this point you can list your jobs, stop any jobs you have running and then log out.
Putting a Job in the Background

New jobs run in the foreground unless you specify otherwise. To run a job in the
background, end the input line with an ampersand ("&"). This is useful for running non-
interactive programs that perform a lot of calculations. To run the command find / -
name abc > shell-commands as a background job

$ find / -name abc > shell-commands &
[1] 6575
$

The shell outputs the job number (in this case, 1) and process ID (in this case, 6575),
and then returns to a shell prompt. When the background job finishes, the shell will list
the job number, the command, and the text "Done’, indicating that the job has completed
successfully:

[1]+ Done find / -name abc >shell-commands

To move a job from the foreground to the background, first suspend it and then type
bg (for "background™).

o For example, to start the command find / -name abc > shell-commands in the
foreground, suspend it, and then specify that it finish in the background, you would

type:
$ find / -name abc > shell-commands
Ctrl+z

[1]+ Stopped find / -name abc >shell-commands
$ bg
[1]+ find / -name abc &

$

If you have suspended multiple jobs, specify the job to be put in the background by
giving its job number as an argument. TFor example, to run job 4 in the background

$ bg %4
Putting a Job in the Foreground

Type fg to move a background job to the foreground. By default, fg works on the most
recent background job. For example, to bring the most recent background job to the
foreground

$fg



To move a specific job to the foreground when you have multiple jobs in the
background, specify the job number as an option to fg. To bring job 3 to the foreground

$ fg %3

Listing Your Jobs

To list the jobs running in the current shell, type jobs.
$ jobs
[1]- Stopped find / -name abc >shell-commands
[2]+ Stopped find / -name abc >bash-commands
$

This example shows two jobs--- find / -name abc > shell-commands and find / -name
abc > bash-commands. The “+' character next to a job number indicates that it's the
most recent job, and the "-' character indicates that it's the job previous to the most
recent job. If you have no current jobs, jobs returns nothing.

Stopping a Job

Typing Ctrl+c interrupts the foreground job before it completes, exiting the program.
To interrupt cat, a job running in the foreground

$ cat
Ctrl+c
$

Use kill to interrupt ("kill") a background job, specifying the job number as an
argument. To kill job number 2

$ kill %2
Command History

Your command history is the sequential list of commands you have typed, in the current
or previous shell sessions. The commands in this history list are called events.

By default, bash remembers the last 500 events, but this number is configurable.

Your command history is stored in a text file in your home directory called
“.bash_history'; you can view this file or edit it like you would any other text file.

Viewing Your Command History
Use history to view your command history. To view your command history
$ history
1 who
2 apropos shell >shell-commands
3 apropos bash >bash-commands
4 history
$

10



This command shows the contents of your command history file, listing one command
per line prefaced by its event number. Use an event number to specify that event in your
history. To search your history for the text “find'

$ history | grep find
Specifying a Command from Your History
You can specify a past event from your history on the input line, in order to run it again.

The simplest way to specify a history event is to use the up and down arrow keys at the
shell prompt to browse your history. The up arrow key takes you back through past
events, and the down arrow key moves you forward into recent history. When a history
event is on the input line, you can edit it as normal, and type to run it as a command; it
will then become the newest event in your history.

To run a history event by its event number, enter an exclamation mark ("!") followed by
the event number (1).

$1

11



Introduction to R
Neeraj Budhlakoti, Sudhir Srivastava, D. C. Mishra
ICAR-1ASRI, New Delhi

Introduction

R is a powerful programming language for statistical analysis. This software is an
implementation of S programming language which was designed by John
Chambers at Bell Labs. R was created by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand. It is currently developed by R Development
Core Team. The name "R’ is from the first names of first two authors and partly due
to its inheritance from 'S'. Recently R has become one of world’s popular statistical
analysis software, because of the following reasons:

(i) R is free, open source and capable of almost any statistical analysis including
the most recently developed statistical methodologies.

(ii) R provides very good graphical facilities.

(ili) R is easily extensible through new contributions from statisticians and
researchers around the globe, which also makes R quite different from other popular
statistical analysis software. In fact, R community is highly active in terms of new

contributions in the form of packages to R.
Working in R and RStudio

R can be installed in Linux, Unix, Windows and Mac platforms from www.r-
project.org. For downloading R, please visit https://cloud.r-project.org/.

12
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The R GUI
RStudio is a free, open-source IDE (integrated development environment) for R. It
can be downloaded from https://www.rstudio.com/products/rstudio/download/.
One must install R before installing RStudio. The interface is organized so that the
user can clearly view graphs, data tables, R code, and output all at the same time.
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R Studio Interface

There are various ways for working in R:

*  Work directly from the R editor to type in your script and execute the script
completely (batch) or line-by-line (highlight and execute)

*  Write script in an external editor (Notepad or software that interfaces with R)
and execute in R by copy/paste or highlighting

* Beyond the native R GUI, external GUI can work with R to help in writing
scripts, selecting functions, procedures, statistical tests, or graphics
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Getting started: RStudio

R is an expression language with a very simple syntax. It is case sensitive as are
most UNIX based packages. For example, A and a are different symbols and refer
to different variables. The set of symbols which can be used in R names depends
on the operating system and country within which R is being run (technically on
the locale in use). Normally all alphanumeric symbols are allowed (and in some
countries this includes accented letters) plus ‘.” and  ’, with the restriction that a
name must start with ‘.’ or a letter, and if it starts with °.” the second character must
not be a digit. Elementary commands consist of either expressions or assignments.
If an expression is given as a command, it is evaluated, printed (unless specifically
made invisible), and the value is lost. An assignment evaluates an expression and
passes the value to a variable but the result is not automatically printed. Commands
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are separated either by a semi-colon (‘;’), or by a newline. Elementary commands
can be grouped together into one compound expression by braces (‘{” and ‘}’).
Comments can be put almost anywhere, starting with a hashmark (‘#’), everything
to the end of the line is a comment. If a command is not complete at the end of a
line, R will give a different prompt, by default + on second and subsequent lines
and continue to read input until the command is syntactically complete.

Getting and installing R

To be able to use R, it needs to be installed in computer. R is available for free
download from any one of the mirror sites of Comprehensive R Archive Network
(CRAN) in http://cran.r-project.org/. For downloading, it is better to select a mirror
located nearer to you. R is available for installation in Windows/Macintosh/Unix
platforms. To install R in a given machine, first double-click the downloaded file
R.exe, then select language as "English'. R setup wizard window will appear. Select

on "Next' and accept most of the default settings during the installation.

To start R, click on start menu» all programs — R R 3.4.1 and a screen
as shown in Fig. 1 appears. The white blank screen is called R Console and this is
the place where all R codes are written and outputs appear, unless outputs are
directed to some external files. There will be a toolbar at the top of the Console and
a few menus in the R window. To know what the buttons on the toolbar does, hold
your mouse on the button for some time, a description of the button will appear.
There is an R editor which can be used to write and edit R codes_.F% editor window
is just like a text editor with facilities for select, cut, copy, paste, typing text,
deleting text etc. This window opens by clicking on File New Script in the
menu bar. The codes written in R editor window needs to be passed to the R console
for execution by clicking on "Run line or selection button' on the toolbar in the R

editor window.
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Downloading and installing a package

To use an R package, download the package from CRAN and then install and load
it in an R session. A package can be downloaded from within R or from outside R.
On a Windows machine which is connected to internet, a package can be installed
by clicking on Packages ! Install packages(s) from the menu bar. This will open a
list of mirrors. Select a mirror and then, from the available list of packages in the
website, select the desired packages. They will be installed into R.

One can also install the package from command line and then package can be
loaded using following command.

> install.packages(‘“‘agricolae”™)

> library(agricolae)

R Workspace

R workspace is temporary space on your CPU’s RAM that “disappears” at the end
of R session. It includes any user-defined objects (vectors, matrices, data frames,
lists, functions). All data, analyses, output are stored as objects in the R workspace.
This workspace is not saved on disk unless you tell R to do so. This means that your
objects are lost when you close R and not save the objects, or worse when R or your
system crashes on you during a session. When you close the RGui or the R console
window, the system will ask if you want to save the workspace image. If you select
to save the workspace image then all the objects in your current R session are saved
in a file “.RData”. “.RData” is a binary file located in the working directory of R,
which is by default the installation directory of R. During your R session, you can
also explicitly save the workspace image.

Go to the ‘Session” menu and then select ‘Save Workspace as’
> save.image(“‘examplel.Rdata”)

If you have saved a workspace image and you start R the next time, it will restore
the workspace. So all your previously saved objects are available again.

Go to the ‘Session’ menu and then select ‘Load Workspace’.

> load.image(“examplel.Rdata”)
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Windows uses a \ (left slash) to delineate locations in CPU:
C:\Users\hp\Documents

R uses / (right slash) to delineate locations in CPU:
C:/Users/hp/Documents

An alternative to R’s / (single right) is \\ (two left) slashes:
C:\\Users\\np\\Documents

There is no issue in the MAC OS/Linux as they have retained the / (right slash)
as the basis for directory delineation

Print the current working directory

> getwd()

List the objects in the current workspace

> 1s()

Change to my directory

> setwd(mydirectory)

Display last 25 commands

> history()

Display all previous commands

> history(max.show=Inf)

Saving R workspace

> x <- 5 # object x; x is assigned value 5

>y <- 10 # object y; y is assigned value 10

>z <- x+y # object z (addition of numbers x and y); z is assigned the value x+y
> save(X, Y, file = "examplel_xy.RData") # save two specified objects x and y
> save.image(file = "examplel.RData") # save entire workspace

Removing objects R workspace: Use rm()
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> 1s()

[ ey

> rm(X, y) # removes objects x and y
> 1s()

[1] 2"

* Use load() to add previously saved objects or workspaces to your current R
session.

> load(file = "examplel.RData")
> 1s()

[2] "x""y" izt

Getting help with functions and features

R has an inbuilt help facility similar to the man facility of UNIX. To get more
information on any specific named function, for example solve, the command is

> help(solve)

An alternative is

> ?solve

For a feature specified by special characters, the argument must be enclosed in
double or single quotes, making it a “character string”: This is also necessary for a
few words with syntacticmeaning including if, for and function.

> help("[[")

Either form of quote mark may be used to escape the other, as in the string "It’s
important”. Our convention is to use double quote marks for preference. On most
R installations help is available in HTML format by running

> help.start()

which will launch a Web browser that allows the help pages to be browsed with

hyperlinks. On UNIX, subsequent help requests are sent to the HTML-based help
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system. The ‘Search Engine and Keywords’ link in the page loaded by help.start()
is particularly useful as it is contains a high-level concept list which searches though
available functions. It can be a great way to get your bearings quickly and to
understand the breadth of what R has to offer. The help.search command
(alternatively ??) allows searching for help in various ways. For example,

> ??solve

Try ?help.search for details and more examples.

The examples on a help topic can normally be run by

> example(topic)

Windows versions of R have other optional help systems: use

> ?help

Data types in R

There is a > symbol in the Console. The commands are typed after this symbol and
then the Enter button needs to be pressed. When a command is written in the
Console and the Enter button is pressed, R reads the commands and returns some
results or some error message on the Console.

R is an object oriented language and therefore, all data types in R are some kind of
object. Objects may be variables, vectors, matrices, arrays, character strings,
functions, or more general structures built from such components. During an R
session, objects are created and stored by name. Once can use the command

> objects()

to display the names of the objects which are currently stored within R. The
collection of objects currently stored is called the workspace. One can remove
objects using the function rm(). For example, the following code removes objects
x and y form the workspace.

>rm(X, y)
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An object created during an R session can be saved in a file for use in future R
sessions. The entire workspace of an R session and the history of all the commands
used during the session can also be saved. Some commonly encountered objects are
discussed below.

Numbers

The most basic way to store a number is to make an assignment of a single number:
a<-3

The “<-” tells R to take the number to the right of the symbol and store it in a

CC__9

variable whose name is given on the left. You can also use the symbol. When
you make an assignment R does not print out any information. If you want to see
what value a variable has just type the name of the variable on a line and press the
enter key:

>a

[1]3

This allows you to do all sorts of basic operations and save the numbers:

> b <- sgrt(a*a+3)

>Db

[1] 3.464102

Strings: One can not only limited to just storing numbers. We can also store strings.
A string is specified by using quotes. Both single and double quotes will work:

> a <- "hello"

>a

[1] "hello"

> b <- ¢("hello”,"there™)

>b

[1] "hello™ "there"

> b[1]

[1] "hello"
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Vectors

Simplest object in R is a vector. A vector is a collection of elements. For example,
creates a vector of 5 numbers.

> x <-¢(10.4, 5.6, 3.1, 6.4, 21.7)

Matrices

A matrix object also is a collection of elements but it has two dimensions. They can
also be numeric, character or logical in nature. Following is an example of creating
a matrix.

> x=matrix(c("a","b","c","d"),nrow=2)

> X

[11[2]

[1,] "a" "c"

[2,] "b" "d"

Matrix facilities: As noted above, a matrix is just an array with two subscripts.
However it is such an important special case it needs a separate discussion. R
contains many operators and functions that are available only for matrices. For
example t(X) is the matrix transpose function, as noted above. The functions
nrow(A) and ncol(A) give the number of rows and columns in the matrix A
respectively.

The operator %*% is used for matrix multiplication. An n by 1 or 1 by n matrix
may of course be used as an n-vector if in the context such is appropriate.
Conversely, vectors which occur in matrix multiplication expressions are
automatically promoted either to row or column vectors, whichever is
multiplicatively coherent, if possible, (although this is not always unambiguously
possible, as we see later).

If, for example, A and B are square matrices of the same size, then

>A*B

is the matrix of element by element products and
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> A %*% B

is the matrix product. If x is a vector, then

> X %*% A %*% X

is a quadratic form. The function crossprod() forms “crossproducts”, meaning that
crossprod(X, y) is the same as t(X) %*% y but the operation is more efficient.
Forming partitioned matrices with cbind() and rbind(): As we have already seen
informally, matrices can be built up from other vectors and matrices by the
functions cbind() and rbind(). Roughly cbind() forms matrices by binding together
matrices horizontally, or column-wise, and rbind() vertically, or row-wise.

In the assignment

> X <- chind(arg_1, arg_2, arg_3, ...)

the arguments to chind() must be either vectors of any length, or matrices with the
same column size, that is the same number of rows. The result is a matrix with the
concatenated arguments arg 1, arg 2, . . . forming the columns. If some of the
arguments to cbind() are vectors they may be shorter than the column size of any
matrices present, in which case they are cyclically extended to match the matrix
column size (or the length of the longest vector if no matrices are given).

The function rbind() does the corresponding operation for rows. In this case any
vector argument, possibly cyclically extended, are of course taken as row vectors.
Suppose X1 and X2 have the same number of rows. To combine these by columns
into a matrix X, together with an initial column of 1s we can use

> X <- cbind(1, X1, X2)

The result of rbind() or cbind() always has matrix status. Hence cbind(x) and
rbind(x) are possibly the simplest ways explicitly to allow the vector x to be treated
as a column or row matrix respectively.

Arrays
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Arrays are multi-dimensional generalization of vectors and matrices. A two-
dimensional array is a matrix. Arrays can have more than two dimensions. Arrays
can be constructed from vectors by the array function, which has the form

> Z <- array(data_vector, dim_vector)

For example, if the vector h contains 24 or fewer, numbers then the command

> Z <-array(h, dim=c(3,4,2))

Factors

Factor objects are used to specify categorical or classificatory or grouping
variables. For example, males and females are two levels of a variable gender. Then
gender can be thought of a factor object.

> gender=c("M", "F", "M")

> gender=as.factor(gender)

> levels(gender)

[1] "F" "M"

Factor variables are particularly useful in analysis of variance and in linear model
with grouping variables.

Lists

A list is a collection of objects where each object can be of different type. For
example, a list can have first object as a vector, second object as a matrix and third
object as a data frame.

> mylist=list(x=c(10,20,30),y=matrix(1:6,nrow=3))

> mylist

$x

[1]1102030

Y

[11[2]

[1,]14

[2]25
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[3,]36

> mylist[[1]]

Data frames

A data frame is a two dimensional object. But unlike matrices, different columns
of data frame can be different types, for example some columns can be numeric,
some columns can be character, some columns can be factors. Here a column
generally refers to a variable.

> age=c(20,25,28,30,26)

> weight=c(50,53,54,55,51)

> mydata=data.frame(age,weight)

> mydata

age weight

12050

22553

32854

4 30 55

52651

The data.frame() function is used to create a data frame.

Functions

Functions in R are a kind of objects which takes one or more inputs and produces
some result(s) as output. R has a number of in-built functions. R also provides
facility to create new functions by users. R has huge number of in-built functions.
As a simple example, to obtain the mean and variance of a set of numbers 10, 13,
21, 34,51, 32, 45, 32, 17, 29, 41, 52, the following code can be used.

> x=¢(10,13,21,34,51,32,45,32,17,29,41,52)

> mean(x)

[1] 31.41667

> var(x)
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[1] 200.9924

Here, ¢(), mean() and var() are in-built functions of R. The function c() assigns
those numbers to the object x. The commands mean(x) and var(x) computes the
mean and variance of an object x. Here, x is the input, also called argument, to the
function mean() and var().

Reading data from files

Large data objects will usually be read as values from external files rather than
entered during an R session at the keyboard. R input facilities are simple and their
requirements are fairly strict and even rather inflexible. There is a clear presumption
by the designers of R that you will be able to modify your input files using other
tools, such as file editors or Perll to fit in with the requirements of R. Generally
this is very simple. If variables are to be held mainly in data frames, as we strongly
suggest they should be, an entire data frame can be read directly with the
read.table() function. There is also a more primitive input function, scan(), that can
be called directly. For more details on importing data into R and also exporting
data, see the R Data Import/Export manual.

Reading data from a spreadsheet

To read an entire data frame directly, the external file will normally have a special
form. The first line of the file should have a name for each variable in the data
frame. Each additional line of the file has as its first item a row label and the values
for each variable.

> mydata2=read.table("rainfall.txt",header=TRUE,sep=",")

Reading data from Excel sheet

> library(xIsx)

> read.xIsx("myfile.xIsx", sheetName = "Sheet1")

Reading data from a particular Web page

> webdata=read.table("http://data.princeton.edu/wws509/datasets/effort.dat")

> webdata
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Some Hands on with R

Examining the distribution of a set of data

Given a (univariate) set of data we can examine its distribution in a large number

of ways. The simplest is to examine the numbers. Two slightly different summaries

are given by summary function.

> attach(faithful)

> summary(eruptions)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.600 2.163 4.000 3.488 4.454 5.100

> fivenum(eruptions)

[1] 1.6000 2.1585 4.0000 4.4585 5.1000

> stem(eruptions)

> hist(eruptions)

## make the bins smaller, make a plot of density
> hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)
> lines(density(eruptions, bw=0.1))

> rug(eruptions) # show the actual data points

Fitting Linear models

The basic function for fitting ordinary multiple models is Im(), and a streamlined

version of the call is as follows:
> fitted.model <- Im(formula, data = data.frame)
For example

> fm2 <- Im(y ~ x1 + x2, data = production)

would fit a multiple regression model of y on x1 and x2 (with implicit intercept

term).

Fitting Generalized linear model
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Since the distribution of the response depends on the stimulus variables through a
single linear function only, the same mechanism as was used for linear models can
still be used to specify the linear part of a generalized model. The family has to be
specified in a different way. The R function to fit a generalized linear model is
glm() which uses the form

> fitted.model <- glm(formula, family=family.generator, data=data.frame)

Linear equations and inversion

Solving linear equations is the inverse of matrix multiplication. When after

> b <- A%*% X

only A and b are given, the vector x is the solution of that linear equation system.
InR,

> solve(A,b)

solves the system, returning X (up to some accuracy 10ss).

Eigenvalues and eigenvectors

The function eigen(Sm) calculates the eigenvalues and eigenvectors of a symmetric
matrix Sm. The result of this function is a list of two components named values and
vectors. The assignment

> ev <- eigen(Sm)

will assign this list to ev. Then ev$val is the vector of eigenvalues of Sm and ev$vec
is the matrix of corresponding eigenvectors. Had we only needed the eigenvalues
we could have used the assignment:

> evals <- eigen(Sm)$values

evals now holds the vector of eigenvalues and the second component is discarded.
If the expression

> eigen(Sm)

is used by itself as a command the two components are printed, with their names.
For large matrices it is better to avoid computing the eigenvectors if they are not

needed by using the expression
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> evals <- eigen(Sm, only.values = TRUE)$values

Generating Plots

One of the most frequently used plotting functions in R is the plot() function. This
is a generic function: the type of plot produced is dependent on the type or class of
the first argument.

plot(x, y)

plot(xy)

If x and y are vectors, plot(x, y) produces a scatterplot of y against x. The same
effect can be produced by supplying one argument (second form) as either a list
containing two elements x and y or a two-column matrix.

plot(x) If x is a time series, this produces a time-series plot. If x is a numeric vector,
it produces a plot of the values in the vector against their index in the vector. If X is
a complex vector, it produces a plot of imaginary versus real parts of the vector

elements.
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Descriptive Statistics

Descriptive statistics investigates the variables separately. Various descriptive
statistics can be computed by using in-built R functions as given below.

Name of function Use of function

mean calculates the mean of an input

median calculates the median of an input

var calculates the variance of an input

sd calculates the standard deviation of an input
IQR calculates the interquartile range of an input
min calculates the minimum value of an input
max calculates the maximum of an input

range returns a vector containing the minimum and

maximum of all given arguments

summary returns a vector containing a mixture of the above
functions (minimum, first quartile, median, mean,
third quartile, maximum)

> data(trees)
> head(trees)
Girth Height VVolume

1 83 70 103
2 86 65 10.3
3 88 63 10.2

4 105 72 164
510.7 81 1838
6 108 83 19.7

> summary(trees)

Girth Height  Volume
Min. :8.30 Min. :63 Min. :10.20
1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
Median :12.90 Median :76 Median :24.20
Mean :13.25 Mean :76 Mean :30.17
3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
Max. :20.60 Max. :87 Max. :77.00
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> mean(trees$Height)
[1] 76

> sd(trees$Height)
[1] 6.371813

> range(trees$Height)
[1] 63 87

Graphics

Histogram plots the frequencies that data appears within certain ranges.

> data(trees)

Add a title: The “main” statement will give the plot an overall heading.

Add axis labels: Use “xlab” and “ylab” to label the X and Y axes, respectively.
Changing colors: Use the col statement

hist(trees$Height, main="Height of Cherry Tree", xlab="Height",
ylab="Frequency", col="red")

Height of Cherry Tree

A boxplot provides a graphical view of the median, quartiles, maximum, and
minimum of a data set.
> boxplot(trees$Volume,main="Volume of Timber', ylab="VVolume (cubic ft)")

Volume of Timber

60

Wolume [cubic i)

40

20
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Partitioning the Graphics Window

A useful facility before beginning is to divide a page into smaller pieces so that
more than one figure can be displayed graphically.

par: used to set or query graphics parameters

par(mfrow=c(2,2))

# This will create a window of graphics with 2 rows and 2 columns.

# The windows are filled up row-wise.

# Use mfcol instead of mfrow to fill up column-wise.

> data(trees)

> par(mfrow=c(2,2))

> hist(trees$Height)

> boxplot(trees$Height)
> hist(trees$VVolume)

> boxplot(trees$VVolume)
> par(mfrow=c(1,1))

Histogram of trees$Height

Fre:
0 2 4 6 8 10

65 70 75 80 85

L] —

r T T T T T 1
60 65 70 75 80 85 €0

treesSHeight

Histogram of trees$Volume
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- Use layout()
Example: layout(matrix(1:4,2,2)) will partition the window into 4 equal parts
One can view the layout with layout show (n = 4)

31



A scatter plot provides a graphical view of the relationship between two sets of
numbers.

> plot(trees$Height, trees$Volume, xlab="Height", ylab="Volume",
main="Scatter Plot", pch=20)

Scatter Plot
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parameter pch stands for ‘plotting character’.
> pairs(trees)

A matrix of scatterplots is produced.
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Density plot is a representation of the distribution of a numeric variable that uses
a kernel density estimate to show the probability density function of the variable.
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In R Language we use the density() function which helps to compute kernel density
estimates.

> plot(density(gtemp), ylim=c(0, 2), col = "green",main = "Density plot™)

> lines(density(gtemp?2), col="red")

> legend(0.5,1.5, cex=0.8, c("gtemp", "gtemp2"), col=c("green", "red"), lty=1:1)

Density plot

05 0.0 05

N=130 Bandwidth = 007992

R Packages for analysis of biological sequence analysis and retrieval of
genomic data

= seqinr

= tidysq

= biomartr

" rentrez

R packages for sequence alignment
= Biostrings

" msa

= msaR

= ggmsa

AlignStat

R Packages for differential gene expression analysis of microarray data
= amda

maGUI

maEndToEnd

= limma
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= GEOlimma

R packages for differential gene expression analysis of RNA-Seq data
= edgeR

= DESeq?2

= ideal

= DEvis

R Packages for protein structure analysis
* Bio3D

= Rpdb

= XLmap

R packages for protein-protein interaction graphs
= graph

RBGL

Rgraphviz

crosstalkr

= jgraph

R Packages for proteomics data analysis
= RforProteomcs

= protti

= Proteus

= DanteR

= MSstats

= MSqgRob

= DAPAR

R Packages for metagenomics data analysis
= MicrobiomeExplorer

= matR

= MegaR

R Packages for GWAS and genomic selection
= statgenGWAS
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= GWASTools
= BlueSNP

= rrfBLUP

= Ime4GS

= BWGS

= GSelection
= learnMET
= GAPIT
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Text Analytics in Omics Data
K.K. Chaturvedi and M.S. Farooqi

Introduction

Text mining is about extracting the information and knowledge from the given corpora of text
or text related sources. Text mining is the process of compiling, organizing, and analyzing large
set of documents to discover undiscovered knowledge from the available texts which will be
useful for analysts and decision makers. In simple words, it can be defined as discovery of
undiscovered knowledge from the available text. Text mining is one of the upcoming important
areas of data mining to find or search useful and novel information from the available text data
or documents.

Data mining defined as identifying the data sets, selection of features, preparing data and
analyzing the trends and distribution to discover novel information or knowledge. In addition to
this, the text mining refers to identify the documents or set of documents, extracting features,
select the useful or important features using suitable data reduction techniques, preparing data
sets and then analyze the trends and distribution to uncover the hidden information/knowledge
using syntactic and semantic way.

Text mining is solely depend on the language and can be achieved by using Natural Language
processing techniques. Textual data contains group of sentences or paragraphs or words that
determine its purpose and use. The analysis of textual contents is difficult because of not
containing any numeric values as it is desirable in any analytical technique. The text data need
to be processed and converted into numeric form to analyze it. The basic application areas starts
from feedback processing, opinion mining, text summarization, news report analysis, spam
filtering and identification, document similarity, document retrieval, biological data repositories
etc. The text is usually contains many relevant as well as irrelevant information lying in the
document. The irrelevant or un-useful information may be discarded during the pre-processing
of the documents or report. The text mining is two stage processes, i.e. pre-processing of
documents and application of mining techniques.

Omics refers to a field of study in biology ending in -omics, such as genomics, proteomics or
metabolomics. The suffix -ome is used to study in genome, proteome or metabolome
respectively. Text mining in omics data is also refers as biomedical text mining (also known as
BioNLP). In BioNLP, text mining is applied to biomedical and molecular biology texts and
literature. It is a rather recent research field on the edge of natural language processing,
bioinformatics, medical informatics and computational linguistics.

Pre-processing of Text Data
The standard steps for pre-processing of any textual document contains following steps:

Tokenization: Tokenization represents the process of converting a stream of characters into
sequence of tokens. The token can be a sentence or a paragraph or a line or aword or an alphabet.
Tokenization refers to separate the token from the given text. Here, we consider the token as a
word or a term. We remove all punctuation marks, non-printable characters and other
meaningless symbols as they may not contribute in the classification task. All capital letters are
also replaced by small case letters.

Stop Word Removal: Stop words are those words which are commonly used in the texts but
do not carry useful meaning. A list of English stop words, i.e. prepositions, conjunctions,
articles, verbs, nouns, pronouns, adverbs, adjectives, etc. can be downloaded from
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www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words. In our study, we have used
SMART data set as a stop word list. We have also created our own user defined list as a
dictionary of stop words which contains some other language characters, numbers and other
special characters.

Stemming: A process of converting the derived word to their base word is called stemming.
The base word is known as stem. As we know that each individual term can be expressed in
many forms and carry special meaning. For example, the terms “computerized”, “computerize”,
“computarization” and “computation” share the same base stem as “computer”. Instead of
considering all terms as individual terms, it can be replaced by a single term. In this way, the
weightage can be increased for such terms and numbers of unnecessary terms can be avoided.
Standard Porter stemming algorithm (Porter, 1980) can be utilized for word stemming.

Feature Reduction: Most frequently and less frequently occurring terms may be removed from
the dataset. They may not be able to discriminate the documents or may lead to overfit/ underfit
the model. Generally, in classification, the term which has less than three or more than forty/fifty
occurrences will generally be removed from the dataset as most of the data mining algorithm
may not be able to handle large feature sets.

Information Gain or InfoGain: It is an entropy based measure used for feature selection.
Information gain is helpful in determining the importance or relevance of the attribute or feature
or term or token. Information gain is used to rank all the terms in the data set. Selecting the top
few terms helps in removing the non-relevant features in the data set. This is also helpful in
determining the effect of number of terms to show any significant improvement in the
performance of machine learning techniques.

Representation of Textual Data

Text data is generally available in unstructured format. To make it analytical friendly, there is a
strong need to make it structured. The textual data can be divided into multiple attributes, i.e.
title, heading, sections, subsections, paragraphs, etc. There are many ways to make the textual
reports structured. Each textual document contains tokens and there are large numbers of
documents available. This can be represented as document*term matrix where the rows are
considered as documents and columns are considered as terms or tokens or words or features
(Salton and Buckley, 1988). This matrix can be populated in either of the following ways:

Binary Representation: The matrix will be filled up by zero or one for the absence or presence
of aterm in the document. Such type of representation will be helpful in probability based model
such as Naive Bayes classification where presence or absence of a term is considered. This type
of representation is biased towards a larger document.

1, if term appears in a document
Wi =
0, else

Term Frequency Representation: In this type of representation, the frequency of a term in the
document will be counted and stored in the matrix. This type of representation will give
importance to the term in a particular document as in Multinomial Naive Bayes Classification.
This will be normalized with the length of the document to avoid the bias towards the larger
documents.

TF; = Occurrences of a term in the document

This can be normalized, if we divide the TF (Term-Frequency) by total number of terms in the
document
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TF,
Norm (TF;) = —

Where n is the total number of terms in the document.

TF*IDF representation: TF*IDF stands for “term frequency (TF) times inverse document
frequency (IDF)”. It is generally used to determine the importance of a term in the complete
dataset or document set. The importance increases proportionally to the number of times a word
appears in the document but is offset by the frequency of the word in the corpus. The inverse
document frequency is obtained by dividing the number of all documents by the number of
documents containing the term, and then taking the logarithm of that quotient. Such type of
representation is used in ranking of terms and selecting top few terms.

Wi = TFL * IDFl

N
Where IDF; = 1 (—)
ere i = log DF,
Where DFi is the document frequency and being defined as the appearance of a particularterm
in the number of documents and N is the total number of documents.

Mining of Textual Data

Once the data table has been prepared, the data mining techniques can be applied based on the
desirable task. Similar to data mining, there are many ways to handle this data using statistical,
data mining, machine learning and soft computing techniques to discover and infer new
knowledge with the existing literature. The categories of various tasks in text mining are data
exploration, classification, clustering, association and visualization. General statistics can be
seen with respect to frequency distribution and transformation of data into multiple ways. The
level of natural language processing are summarized in fig. 1.

PROCESSING LEVEL TASKS AND APPLICATIONS
Character & strings Word tokenization, sentence boundary detection, gene symbal
level recognition, text pattern extraction

POS-lagging, parsing, chunking, term extraction, gene mention

W 1ok I |
ord token leve| recognition

Sentence classification and retrieval and ranking, question

Senlence kvel answering, automatic summarization

Sentance window level Anaphora resolution

Paragraph & passages

Detection of rhetorical zones
level

Whole document level Documant similarity calculation

Multi-document collection
level

Document clustering, multi-document summarization

Fig. 1: Processing levels of NLP
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Applications of Text Mining

The text mining is being applicable in wide areas of research started from bibliometric analysis
to social media analytics. It is also applicable in government, research, and business as there is
lot of documentations in the form of reports, articles, proceedings, compilations etc. are being
made.

Developments in this area have been related to the identification of biological entities (named
entity recognition), such as protein and gene names as well as chemical compounds and
drugs [1] in free text, the association of gene clusters obtained by microarray experiments with
the biological context provided by the corresponding literature, automatic extraction of protein
interactions and associations of proteins to functional concepts (e.g. gene ontology terms). Even
the extraction of kinetic parameters from text or the subcellular location of proteins have been
addressed by information extraction and text mining technology. Information extraction and text
mining methods have been explored to extract information related to biological processes and
diseases. The applications can be classified as follows

e Spam filtering

e Reports and records management

e Sentiment Analysis Tools

e Opinion Mining

e Social media analytics for National Security/Intelligence
e Literature mining especially Life Sciences
e Feedback mining

e Creating recommendations

e Customer service support

e Document labeling and categorization

e Fraud detection by investigating the claims
e Fighting cyberbullying or cybercrime

e Duplicate and clone detection

e Plagiarism detection

e Search/Information Access

e Biology (Fig. 2)
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Fig. 2: Application areas of Omics domain

Sources for Literature

There are large number of resources are available to access various datasets from large number
of resources. The data types are diversified and need to be processed and integrated. The data is
varied from literature to the experimental processed data. The data are accessible from
PubMed/Entrez, Medline, KDD Challenge, Google Scholar, MedMiner, CrossRef Search etc.

Life sciences -> generates heterogeneous data types (sequence, structure and others)
Natural language used for communicating scientific discoveries.
Natural language texts amenable for direct human interpretation

Natural language not only in scientific articles, but also patents, reports, newswire,
database records, controlled vocabularies (GO terms)

Functional information & annotations directly or indirectly derived from the literature
(curation and electronic annotation).

Databases are generally only capable of covering a small fraction of the biological
context information that can be encountered in the literature.

Contextual information of experimental results (cell line, tissue, conditions).
User demands of better information access (beyond keyword searches)
Rapid growth of information, manual information extraction not efficient.

Integration of information from full text articles, databases and genomic studies

40



The process of text analytics and curation process is summarized in fig. 3. The process starts
with manual curation, extraction of features, annotation and prediction with revisions using
biological annotation.

Manual
curation

Extract
predictive
biological Biological
features annotation

Electronic
annotation/
predictions

Expert Manual
validation curation

Fig. 3: Process of Text Analytics and Curation

Challenges in Text Mining

There are many challenges are being faced by the text mining community. Rapid and continuous
updation of information, unstructured text data, use of more than one language in
literature/documents, handling of linguistic text are making the mining task difficult to infer any
new knowledge and patterns. Few of the important challenges are

e Information is in unstructured textual form.
e Not readily accessible to be used by computers.
e Dealing with huge collections of documents
e Problems in handling of synonyms/Antonyms/PoS tagging etc.
e Handling of dictionary and identification of primary term
e Other coding or language characters
Tools for Text Mining

Large number of tools are available to do the text mining. The tools are categorized in open
source tools and commercial tools as follows

The Open Source category of tool contains Carrot2 used for text and search results clustering
framework, GATE (General Architecture for Text Engineering) an open-source toolbox for
natural language processing and language engineering, Python based Gensim for large-scale
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topic modelling and extraction of semantic information from unstructured text, OpenNLP for
natural language processing, Natural Language Toolkit (NLTK) a suite of libraries and
programs for symbolic and statistical natural language processing (NLP), Orange having text
mining add-on, R provides a framework for text mining applications in the package tm, KNIME
as Text Processing extension, PLOS Text Mining Collection etc.

The Closed source or commercial category of tools comprises with IBM SPSS - provider of
Modeler (previously called IBM SPSS Modeler and IBM SPSS Text Analytics) contains
advanced NLP-based text analysis capabilities (multi-lingual sentiment, event and fact
extraction), Mathematica provides built in tools for text alignment, pattern matching, clustering
and semantic analysis, RapidMiner with its Text Processing Extension for data and text mining,
SAS Text Miner and Teragram for commercial text analytics, natural language processing, and
taxonomy software used for Information Management, STATISTICA Text Miner as an optional
extension to STATISTICA Data Miner for Predictive Analytics Solutions, Megaputer
Intelligence derives actionable knowledge from large volumes of text and structured data
including natural language processing (NLP), machine learning, sentiment analysis, entity
extraction, clustering, and categorization. The enterprise feedback and text analytics solutions
developed as Luminoso for natural language processing (NLP), machine learning and artificial
intelligence research at MIT Media Lab. These tools enables the end user in learning,
understanding, measuring and acting on large number of reports, literatures, documents,
feedback and many more to infer the novel knowledge and innovative ideas.

Conclusion

The text mining/analytics is a very important topic in the current day of research in every domain
varied from literature mining to source code analysis. The availability of digital contents in
variety of platforms with the help of open source or commercial tools make somewhat easy to
process these large set of documents and reports. The spam filtering, biological literature
mining, information retrieval has been improved significantly in last few years. The text mining
area has a large number of application areas in Agriculture as well.
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NGS Data Generation: Techniques, Issues and Challenges
Dwijesh Chandra Mishra

Introduction

DNA sequencing is a biochemical method in order to determine the correct order of nucleotide bases in a
DNA macromolecule by using sequencing machines. Earlier sequencing was based on a single type of
method that is Sanger sequencing. In 2005, Next Generation Sequencing (NGS) Technologies emerged
and changed the view of the analysis and understanding of living beings. Over the last two decade,
considerable progress has been made on new sequencing methods. NGS is modern high-throughput DNA
sequencing technologies. They are faster, cheaper, rapid and parallel. They require much less template
preparation than the Sanger sequencing technique.

First Generation Sequencing

1. Dideoxy method or chain termination method:

This method is developed by Sanger and Coulson in 1977. In this method one strand of the double
stranded DNA is used as template to be sequenced. This sequencing is based on using chemically
modified nucleotides called dideoxy-nucleotides (ddNTPs). The dideoxynucleotides are used in
elongation of DNA complementary strand, once incorporated into the DNA strand they prevent the
further elongation. The sequencing reaction is carried out in four test tubes which consist of various
components besides the templates. These components are a small stretch of DNA sequence called primer,
DNA polymerase enzyme, a mixture of four deoxy nucleotide triphosphate (A, T, G, and C) and one of
the dideoxy nucleotide, i.e. either ddATP, ddTTP, ddGTP or ddCTP labeled with radioactive substances
or non-radioactive substances like dig or biotin. The synthesis of new DNA strand continues in the
presence of DNA polymerase enzyme until a dideoxynucleotide is added in the complementary DNA
strand which results in the generation of different sized DNA fragments, ending with labeled ddNTPs.
After the reaction is complete the reaction mixture of all the four tubes are loaded adjacent to each other
on a polyacrylamide sequencing gel. The four lanes specific to ddATP, ddCTP, ddGTP and ddTTP
produce fragments of varying length upon electrophoresis and autoradiography. The position of bands in
the gel is used to directly read DNA sequences from bottom to top. The automated version of this method
uses ddNTPs that are labeled with different color fluorescent dyes so that all four reactions can be run in a
single tube.

2. Chemical cleavage method of DNA sequencing:

This method is developed by Maxam and Gilbert in 1977. This method uses chemicals to break DNA
molecules of specific bases, thus creating fragments of different sizes. DNA molecule to be sequenced is
radiolabeled. The sequencing reaction is devised into four tubes along with a fifth reference tube.

Chemicals Reaction

Dimethyl sulphate Alters guanine at N7 position by methylation
Acid Alters either adenine or guanine

Hydrazine Alters either thymine or cytosine

Hydrazine + NaCl Alters cytosine

NaOH Reference
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For removing altered basepairs from the sequencing reaction, piperidine is added in each tube. Piperidine
breaks the DNA molecules at the sugar residue from the point of altered nucleotide thus making different
sized fragments of DNA. The mixture of DNA fragments are separated on high resolution polyacrylamide
gels by loading the contents of all the four tubes in adjacent lanes. After electrophoresis, the gels are
exposed to x-ray film for developing autoradiographs of the DNA bands from which sequence is read.

Second Generation Sequencing

The first generation of sequencing especially Sanger sequencing was extensively used for three decades,
however, the cost and time was a major drawback. In 2005, second generation sequencing technologies
came into the market which eliminates the limitations of the first generation sequencing. The basic
characteristics of second generation sequencing technology are: (1) The generation of many millions of
short reads in parallel, (2) The speed up of sequencing the process compared to the first generation, (3)
The low cost of sequencing and (4) The sequencing output is directly detected without the need for
electrophoresis. Short read sequencing approaches divided under two wide approaches: sequencing by
ligation (SBL) and sequencing by synthesis (SBS).

1. 454/Roche:

Roche/454 sequencing appeared on the market in 2005, using pyrosequencing technique which is based
on the detection of pyrophosphate, released after each nucleotide incorporation in the new synthetic DNA
strand (http://www.454.com). The pyrosequencing technique is a sequencing-by-synthesis approach.
DNA samples are randomly fragmented and each fragment is attached to a bead whose surface carries
primers that have oligonucleotides complementary to the DNA fragments so each bead is associated with
a single fragment. Then, each bead is isolated and amplified using PCR emulsion which produces about
one million copies of each DNA fragment on the surface of the bead. The beads are then transferred to a
plate containing many wells called picotiter plate (PTP) and the pyrosequencing technique is applied
which consists in activating of a series of downstream reactions producing light at each incorporation of
nucleotide. By detecting the light emission after incorporation of each nucleotide, the sequence of the
DNA fragment is deduced. The use of the picotiter plate allows hundreds of thousands of reactions occur
in parallel, considerably increasing sequencing throughput. The latest instrument launched by Roche/454
called GS FLX+ that generates reads with lengths of up to 1000 bp and can produce ~1Million reads per
run. The Roche/454 is able to generate relatively long reads which are easier to map to a reference
genome. The main errors detected of sequencing are insertions and deletions due to the presence of
homopolymer regions. Indeed, the identification of the size of homopolymers should be determined by
the intensity of the light emitted by pyrosequencing. Signals with too high or too low intensity lead to
under or overestimation of the number of nucleotides which causes errors of nucleotides identification.

2. llumina/ Solexa:

Illumina technology is sequencing by synthesis approach and is currently the most used technology in the
NGS market. During the first step, the DNA samples are randomly fragmented into sequences and
adapters are ligated to both ends of each sequence. Then, these adapters are fixed themselves to the
respective complementary adapters, the latter are hooked on a slide with many variants of adapters
(complementary) placed on a solid plate. During the second step, each attached sequence to the solid plate
is amplified by PCR bridge amplification that creates several identical copies of each sequence. A set of
sequences made from the same original sequence is called a cluster. Each cluster contains approximately
one million copies of the same original sequence. The last step is to determine each nucleotide in the
sequences, Illumina uses the sequencing by synthesis approach that employs reversible terminators in
which the four modified nucleotides, sequencing primers and DNA polymerases are added as a mix, and
the primers are hybridized to the sequences. Then, polymerases are used to extend the primers using the
modified nucleotides. Each type of nucleotide is labeled with a fluorescent specific in order for each type
to be unique. The nucleotides have an inactive 3’-hydroxyl group which ensures that only one nucleotide
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is incorporated. Clusters are excited by laser for emitting a light signal specific to each nucleotide, which
will be detected by a coupled-charge device (CCD) camera and Computer programs will translate these
signals into a nucleotide sequence. The process continues with the elimination of the terminator with the
fluorescent label and the starting of a new cycle with a new incorporation.

3. ABI/SOLID:

Sequencing by Oligonucleotide Ligation and Detection (SOLID) is a NGS sequencer Marketed by Life
Technologies (http:// www.lifetechnologies.com). In 2007, Applied Biosystems (ABI) has acquired
SOLID and developed ABI/SOLID sequencing technology that adopts the ligation (SBL) approach. The
ABI/SOLID process consists of multiple sequencing rounds. It starts by attaching adapters to the DNA
fragments, fixed on beads and cloned by PCR emulsion. These beads are then placed on a glass slide and
the 8-mer with a fluorescent label at the end is sequentially ligated to DNA fragments, and the color
emitted by the label is recorded. Then, the output format is color space which is the encoded form of the
nucleotide where four fluorescent colors are used to represent 16 possible combinations of two bases. The
sequencer repeats this ligation cycle and each cycle the complementary strand is removed and a new
sequencing cycle starts at the position n-1 of the template. The cycle is repeated until each base is
sequenced twice. The recovered data from the color space can be translated to letters of DNA bases and
the sequence of the DNA fragment can be deduced.

4. lon Torrent:

Life Technologies commercialized the lon Torrent semiconductor sequencing technology in 2010
(https//www.thermofisher.com/us/en/home/brands/ion-torrent.html). It is similar to 454 pyrosequencing
technology but it does not use fluorescent labeled nucleotides like other second-generation technologies.
It is based on the detection of the hydrogen ion released during the sequencing process. First, emulsion
PCR is used to clonally amplify adapter ligated DNA fragments on the surface of beads. The beads are
subsequently distributed into micro-wells where sequencing by synthesis reaction occurs. lon torrent chip
consists of a flow compartment and solid state pH sensor micro-arrayed wells that are manufactured using
processes built on standard complementary metal oxide semiconductor (CMOS) technology. The release
of H+ during extension of each nucleotide is detected as a change in the pH within the sensor wells. Since
there is no detectable difference for H+ released from a A, T, G or C bases, the individual dNTPs are
applied in multiple cycles of consecutive order. The speed of sequencing is 2-8 hrs depending on the
machine and chip used. Error rate for substitutions is ~0.1%, similar to lllumina. Homopolymer repeats
more than 6bp lead to increased error rates.

Third Generation Sequencing

The second generation sequencing technologies generally require PCR amplification step which is a long
and expensive procedure. Also, it became clear that the genomes are very complex with many repetitive
areas that second generation sequencing technologies are incapable to solve them and the relatively short
reads made genome assembly more difficult. Third generation sequencing technologies are remedy to
these problems. These third generations of sequencing have the ability to cover a low sequencing cost and
easy sample preparation without the need PCR amplification. The execution time reduces significantly
than second generation sequencing technologies. The most widely used third generation sequencing
technology approach is SMRT (Pacific Biosciences) and Oxford Nanopore sequencing.

1. Pacific biosciences SMRT sequencing

Pacific Biosciences (http//www.pacificbiosciences.com/) developed the first genomic sequencer using
SMRT approach and it’s the most widely used third-generation sequencing technology. Template
preparation involves ligation of single stranded hairpin adapters onto the ends of digested DNA or cDNA
molecules, generating a capped template called SMRT-bell. This technology works with single molecule
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detection which does not require any amplification step. By using a strand displacing polymerase, the
original DNA molecule can be sequenced multiple times, thereby increasing accuracy.

DNA synthesis occurs in zeptoliter sized chambers, called zero-mode waveguides (ZMWs). These ZMW
are small reaction wells that each ideally contains one complex consisting of template molecule,
sequencing primer and DNA polymerase bound to the bottom of the ZMW. The fluorescent signals of the
extended nucleotides are recorded in real time at 75 frames per second for the individual ZMWs. This is
achieved by powerful optical system that illuminates the individual ZMWs with red and green laser
beamlets from the bottom of the SMRT cell and a parallel confocal recording system to detect the signal
from the fluorescent nucleotides. When a nucleotide complementary to the template is bound in position
by the polymerase within the illumination zone of the zmw, the identity of the nucleotide is recorded by
its fluorescent label. Each SMRT cell produces ~50k reads and upto 1 gb of data in 4 hrs. The average
read length is >14 kb. This technology has a high error rate of approximately 11%. This is useful for
denovo assembly of small bacterial and viral genomes as well as large genome finishing.

2. Oxford nanopore sequencing

This technology is also based on single molecule strategy. This relies on the transition of DNA or
individual nucleotides through a small channel called protein nanopore. A nanopore is a nanoscale hole
made of proteins or synthetic materials. A sequencing flow cell comprises hundreds of independent
micro-wells, each containing a synthetic bilayer perforated by biological nanopores. Sequencing is
accomplished by measuring characteristic changes in ionic current that are induced as the bases are
threaded through the pore by a molecular motor protein. Library preparation is minimal, involving
fragmentation of DNA and ligation of adapters. The first adapter is bound with a motor enzyme as well as
a molecular tether, whereas second adapter is a hairpin oligonucleotide that is bound by a second motor
protein. This library design allows sequencing of both strands of DNA from a single molecule, which
increases accuracy. The variation in ionic current is recorded progressively on a graphic model and then
interpreted to identify the sequence. MinlON is released in 2014 which generate longer reads, ensure
better resolution structural genomic variants and repeat content.it is a mobile single —molecule nanopore
sequencing measures connected by a USB 3.0 port of a laptop computer. PromethION is bigger than
MinlON, equivalent to 48 MinlONs.
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NGS Data: Pre-processing, Assembly and Quantification

Dwijesh Chandra Mishra, Sanjeev Kumar and Neeraj Budhlakoti

Sanger Sequencing

e DNA is fragmented

e Cloned to a plasmid vector

e Cyclic sequencing reaction

e Separation by electrophoresis

e Readout with fluorescent tags
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Sanger Vs NGS
e ‘Sanger sequencing’ has been the only DNA sequencing method for 30 years but...

e .. .hunger for even greater sequencing throughput and more economical sequencing
technology...

e NGS has the ability to process millions of sequence reads in parallel rather than 96 at a time
(1/6 of the cost)

NGS Platforms: Different sequencing techniques used for next generation sequencing are:
« Roche/454 FLX: 2004

« Illumina Solexa Genome Analyzer: 2006

« Applied Biosystems SOLiD™ System: 2007

« Helicos Heliscope™ : 2009

+ Pacific Biosciencies SMRT: 2010
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General Experimental Procedure
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Sequencing Technology at a Glance

SOLID platform

Solexa technology

Method Read Accuracy | Time per Cost per 1 Advantages Disadvantages
length run million bases
Chain 400 to 99.9% 20 minutes Rs 144000 Long More expensive
termination 900 bp to 3 hours individual and impractical
(Sanger reads. Useful | for larger
sequencing) for many | sequencing
applications. projects.
Pyrosequencing | 700 bp 99.9% 24 hours Rs 600 Long read size. | Runs are
(454) Fast expensive.
Homopolymer
errors.
Sequencing by | 50 to 300 | 98% 1to 10 days, | Rs3to9 Potential ~ for | Equipment can be
synthesis bp depending high sequence | very expensive.
(Illumina) upon yield, Requires high
sequencer depending concentrations of
and specified upon sequencer | DNA.
read length model and
desired
application.
Sequencing by | 50+350r | 99.9% 1to 2 weeks | Rs78 Low cost per | Slower than other
ligation 50+50 bp base. methods.  Have
(SOLID issue sequencing
sequencing) palindromic
sequence.
Single- 10,000 bp | 87% 30 minutes Rs 7.8-36 Longest read | Moderate
molecule real- | to 15,000 to 4 hours length. throughput.
time bp avg. Fast. Equipment can be
sequencing (14,000 very expensive.
(Pacific Bio) bp);
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Reads, Contigs and Scaffolds
¢ Reads are what you start with (35bp-800bp)
e Fragmented assemblies produce contigs that can be kilobases in length

e Putting contigs together into scaffolds is the next step
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CCTCCTGCTTAAAACCCAAAAGGTCAGAAGGATCGTGAGGCCCCGCTTTC
+
CCCFFFFFHHGHHJIJJJJJJJIRHGIJJJJIIIJGIGIHIJJJIIIIJd
@DJG84KN1:272:D17DBACXX:2:1101:12340:5711 1:N:0:AG
GAAGATTTATAGGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGG
+
CCCFFFFFHHHHHGGIJJJIJJJJJJIJIIIIIJIIGIIJITHITIIIIITIT
NOTE: for paired-end runs, there is a second file

with one-to-one corresponding headers and reads.

(Passarelli, 2012)

Before Assembly

Fragment readout

e DNA characters in a fragment are determined from chromatogram
e Base call is a DNA character that is determined from chromatogram
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e Phred Score- determine the quality value of a base

q = —10 x logo(p)
where p is the estimated error probability for the base
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Annotation of RNA-Seq Data
Sanjeev Kumar, D. C. Mishra, Sneha Murmu and Jyotika Bhati

Introduction

Until the genome revolution, genes were identified by researchers with specific interests in a
particular protein or cellular process. Once identified, these genes were isolated, typically by
cloning and sequencing cDNAs, usually followed by targeted sequencing of the longer
genomics segments that code for the cDNAs. Once an organism’s entire genome sequence
becomes available, there is strong motivation for finding all the genes encoded by a genome at
once rather than in a piecemeal approach. Such catalogue is immensely valuable to researchers,
as they can learn much more from the whole picture than from a much more limited set of
genes. For example, genes of similar sequence can be identified, evolutionary and functional
relationships can be elucidated, and a global picture of how many and what types of genes are
present in a genome can be seen. A significant portion of the effort in genome sequencing is
devoted to the process of annotation, in which genes, regulatory elements, and other features
of the sequence are identifies as thoroughly as possible and catalogued in a standard format in
public databases so that researchers can easily use the information. Functional genomics
research has expanded enormously in the last decade and particularly the plant biology research
community. Functional annotation of novel DNA sequences is probably one of the top
requirements in functional genomics as this holds, to a great extent, the key to the biological
interpretation of experimental results.

Computational Gene Prediction

Computational gene prediction is becoming more and more essential for the automatic analysis
and annotation of large uncharacterized genomic sequences. In the past two decades, many
algorithms have been evolved to predict protein coding regions of the DNA sequences. They
all have in common, to varying degree, the ability to differentiate between gene features like
Exons, Introns, Splicing sites, Regulatory sites etc. Gene prediction methods predicts coding
region in the query sequences and then annotates the sequences databases.

Gene Structure and Expression

The gene structure and the gene expression mechanism in eukaryotes are far more complicated
than in prokaryotes. In typical eukaryotes, the region of the DNA coding for a protein is usually
not continuous. This region is composed of alternating stretches of exons and introns. During
transcription, both exons and introns are transcribed onto the RNA, in their linear order.
Thereafter, a process called splicing takes place, in which, the intron
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Fig. 1: Representative Diagram of Protein Coding Eukaryotic Gene

sequences are excised and discarded from the RNA sequence. The remaining RNA segments,
the ones corresponding to the exons are ligated to form the mature RNA strand. A typical multi-
exon gene has the following structure (as illustrated in Fig. 1). It starts with the promoter region,
which is followed by a transcribed but non-coding region called 5' untranslated region (5'
UTR). Then follows the initial exon which contains the start codon. Following the initial exon,
there is an alternating series of introns and internal exons, followed by the terminating exon,
which contains the stop codon. It is followed by another non-coding region called the 3' UTR.
Ending the eukaryotic gene, there is a polyadenylation (polyA) signal: the nucleotide Adenine
repeating several times. The exon-intron boundaries (i.e., the splice sites) are signalled by
specific short (2bp long) sequences. The 5'(3") end of an intron (exon) is called the donor site,
and the 3'(5") end of an intron (exon) is called the acceptor site. The problem of gene
identification is complicated in the case of eukaryotes by the vast variation that is found in gene
structure.

Gene Prediction Methods

There are mainly two classes of methods for computational gene prediction (Fig. 2). One is
based on sequence similarity searches, while the other is gene structure and signal-based
searches, which is also referred to as Ab initio gene finding.

Sequence Similarity Searches

Sequence similarity search is a conceptually simple approach that is based on finding similarity
in gene sequences between ESTs (expressed sequence tags), proteins, or other genomes to the
input genome. This approach is based on the assumption that functional regions (exons) are
more conserved evolutionarily than non-functional regions (intergenic or intronic regions).
Once there is similarity between a certain genomic region and an EST, DNA, or protein, the
similarity information can be used to infer gene structure or function of that region. EST-based
sequence similarity usually has drawbacks in that ESTs only correspond to small portions of
the gene sequence, which means that it is often difficult to predict the complete gene structure
of a given region. Local alignment and global alignment are two methods based on similarity
searches. The most common local alignment tool is the BLAST family of programs, which
detects sequence similarity to known genes, proteins, or ESTs. The biggest limitation to this
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type of approaches is that only about half of the genes being discovered have significant
homology to genes in the databases.

Ab initio Gene Prediction Methods

The second class of methods for the computational identification of genes is to use gene
structure as a template to detect genes, which is also called ab initio prediction. Ab initio gene
predictions rely on two types of sequence information: signal sensors and content sensors.
Signal sensors refer to short sequence motifs, such as splice sites, branch points, poly
pyrimidine tracts, start codons and stop codons. Exon detection must rely on the content
sensors, which refer to the patterns of codon usage that are unique to a species, and allow
coding sequences to be distinguished from the surrounding non-coding sequences by statistical
detection algorithms.

Many algorithms are applied for modeling gene structure, such as Dynamic Programming,
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linear discriminant analysis, Linguist methods, Hidden Markov Model and Neural Network.
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Based on these models, a great number of ab initio gene prediction programs have been
developed.

Fig. 2: Diagrammatic Representation of Gene Prediction and Annotation
Gene Discovery in Prokaryotic Genomes

Discovery of genes in Prokaryote is relatively easy, due to the higher gene density typical of
prokaryotes and the absence of introns in their protein coding regions. DNA sequences that
encode proteins are transcribed into mMRNA, and the mRNA is usually translated into proteins
without significant modification. The longest ORFs (open reading frames) running from the
first available start codon on the mRNA to the next stop codon in the same reading frame
generally provide a good, but not assured prediction of the protein coding regions. Several
methods have been devised that use different types of Markov models in order to capture the
compositional differences among coding regions, “shadow" coding regions (coding on the
opposite DNA strand), and noncoding DNA. Such methods, including ECOPARSE, the widely
used GENMARK, and Glimmer program, appear to be able to identify most protein coding
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genes with good performance (Fig. 3).

Fig. 3: Flow Diagram of Prokaryotic Gene Discovery

Gene Discovery in Eukaryotic Genome

It is a quite different problem from that encountered in prokaryotes. Transcription of protein
coding regions initiated at specific promoter sequences is followed by removal of noncoding
sequences (introns) from pre-mRNA by a splicing mechanism, leaving the protein encoding
exons. Once the introns have been removed and certain other modifications to the mature RNA
have been made, the resulting mature MRNA can be translated in the 5" to 3" direction, usually
from the first start codon to the first stop codon. As a result of the presence of intron sequences
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in the genomic DNA sequences of eukaryotes, the ORF corresponding to an encoded gene will
be interrupted by the presence of introns that usually generate stop codons (Fig.4).
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Fig. 4: Flow Diagram of Eukaryotic Gene Discovery
Gene Prediction Program

There are two basic problems in gene prediction: prediction of protein coding regions and
prediction of the functional sites of genes. Gene prediction program can be classified into four
generations. The first generation of programs was designed to identify approximate locations
of coding regions in genomic DNA. The most widely known programs were probably
TestCode and GRAIL. But they could not accurately predict precise exon locations. The second
generation, such as SORFIND and Xpound, combined splice signal and coding region
identification to predict potential exons, but did not attempt to assemble predicted exons into
complete genes. The next generation of programs attempted the more difficult task of
predicting complete gene structures. A variety of programs have been developed, including
GenelD, GeneParser, GenLang, and FGENEH. However, the performance of those programs
remained rather poor. Moreover, those programs were all based on the assumption that the
input sequence contains exactly one complete gene, which is not often the case. To solve this
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problem and improve accuracy and applicability further, GENSCAN and AUGUSTUS were
developed, which could be classified into the fourth generation.

GeneMark

GeneMark uses a Markov Chain model to represent the statistics of the coding and noncoding
frames. The method uses the dicodon statistics to identify coding regions. Consider the analysis
of a sequence x whose base at the ith position is called xi. The Markov chains used are fifth
order, and consist of a terms such as P(a/x1x2X3X4Xs), which represent the probability of the
sixth base of the sequence x being given a given that the previous five bases in the sequence x
where X1X2X3XaXs, resulting in the first dicodon of the sequence being X1x2Xsxsxsa. These terms
must be defined for all possible pentamers with the general sequence bib2bsbabs. The values of
these terms can be obtained of analysis of data, consisting of nucleotide sequence in which the
coding regions have been actually identified. When there are sufficient data, they are given by

a Mpipypsbabsa

P( ) =
bibyb3b,bs Ya=ACGT b p,pybabsa

where, M.y, by babsa is the number of times the sequence bib.bsbsbsa occurs in the training data.
This is the maximum likelihood estimators of the probability from the training data.

Glimmer

The core of Glimmer is Interpolated Markov Model (IMM), which can be described as a
generalized Markov chain with variable order. After GeneMark introduces the fixed-order
Markov chains, Glimmer attempts to find a better approach for modeling the genome content.
The motivational fact is that the bigger the order of the Markov chain, the more non-
randomness can be described. However, as we move to higher order models, the number of
probabilities that we must estimate from the data increases exponentially. The major limitation
of the fixed-order Markov chain is that models from higher order require exponentially more
training data, which are limited and usually not available for new sequences. However, there
are some oligomers from higher order that occur often enough to be extremely useful
predictors. For the purpose of using these higher-order statistics, whenever sufficient data is
available, Glimmer IMMs.

Glimmer calculates the probabilities for all Markov chains from 0™ order to 8. If there are
longer sequences (e.g. 8-mers) occurring frequently, IMM makes use of them even when there
is insufficient data to train an 8-th order model. Similarly, when the statistics from the 8-th
order model do not provide significant information, Glimmer refers to the lower-order models
to predict genes.

Opposed to the supervised GeneMark, Glimmer uses the input sequence for training. The ORFs
longer than a certain threshold are detected and used for training, because there is high
probability that they are genes in prokaryotes. Another training option is to use the sequences
with homology to known genes from other organisms, available in public databases. Moreover,
the user can decide whether to use long ORFs for training purposes or choose any set of genes
to train and build the IMM.

GeneMark.hmm
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GeneMark.hmm is designed to improve GeneMark in finding exact gene starts. Therefore, the
properties of GeneMark.hmm are complementary to GeneMark. GeneMark.hmm uses
GeneMark models of coding and non-coding regions and incorporates them into hidden
Markov model framework. In short terms, Hidden Markov Models (HMM) are used to describe
the transitions from non-coding to coding regions and vice versa. GeneMark.hmm predicts the
most likely structure of the genome using the Viterbi algorithm, a dynamic programming
algorithm for finding the most likely sequence of hidden states. To further improve the
prediction of translation start position, GeneMark.nmm derives a model of the ribosome
binding site (6-7 nucleotides preceding the start codon, which are bound by the ribosome when
initiating protein translation). This model is used for refinement of the results.

Both GeneMark and GeneMark.nmm detect prokaryotic genes in terms of identifying open
reading frames that contain real genes. Moreover, they both use pre-computed species-specific
gene models as training data, in order to determine the parameters of the protein-coding and
non-coding regions.

Orpheus

The ORPHEUS program uses homology, codon statistics and ribosome binding sites to
improve the methods presented so far by using information that those programs ignored. One
of the key differences is that it uses database searches to help determine putative genes, and is
thus an extrinsic method. This initial set of genes is used to define the coding statistics for the
organism, in this case working at the level of codon, not dicodons. These statistics are then
used to define a larger set of candidate ORFs. From this set, those ORFs with an unambiguous
start codon end are used to define a scoring matrix for the ribosome-binding site, which is then
used to determine the 5° end of those ORFs where alternative start are present.

EcoParse

EcoParse is one of the first HMM model based gene finder, was developed for gene finding in
E.coli. It focuses on the uses the codon structure of genes. With EcoParse a flora of HMM
based gene finder, usuing dynamic programming and the viterbi algorithm to parse a sequence,
emerged.

Evaluation of Gene Prediction Programs
In the field of gene prediction accuracy can be measured at three levels

a. Coding nucleotides (base level)
b. Exon structure (exon level)
C. Protein product (protein level)

At base level gene predictions can be evaluated in terms of true positives (TP) (predicted
features that are real), true negatives (TN) (non-predicted features that are not real), false
positives (FP) (predicted features that are not real), and false negatives (FN) (real features that
were not predicted) Fig. 5. Usually the base assignment is to be in a coding or non coding
segment, but this analysis can be extended to include non coding parts of genes, or any
functional parts of the sequences.

‘TN’FN‘TP‘FP’TN ‘FP‘TP‘FN‘TN|

Real - -
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Fig. 5: Four Possible Comparisons of Real and Predicted Genes

Sensitivity (Sn): The fraction of bases in real genes that are correctly predicted to be in genes
is the sensitivity and interpreted as the probability of correctly predicting a nucleotide to be in

a given gene that it actually is.
TP

Sn=
TP+FN

Specificity (Sp): The fraction of those bases which are predicted to be in genes that actually
are is called the specificity and interpreted as the probability of a nucleotide actually being in
a gene given that it %s been predicted to be.

S =
IS

Care has to be taken in using these two values to assess a gene prediction program because, as
with the normal definition of specificity, extreme results can make them misleading.

Approximate correlation coefficient (AC) has been proposed as a single measure to circumvent
these difficulties. This defined as AC=2(ACP-0.5), where

1( P P ™ ™ J

ACP = + + +
TP+FN TP+FP TN +FP TN +FN

n

At the exon level, determination of prediction accuracy depends on the exact prediction of exon
start and end points. There are two measures of sensitivity and specificity used in the field,
each of which measures a different but useful property.

The sensitivity measures used are

Sn1 = CE/AE and Sn2 = ME/AE

The specificity measures used are
Sp1=CE/PE and Sp>=WE/PE

Where,

AE = No of actual exons in the data

PE = No of predicted exons in the data
CE = No of correct predicted exons

ME = No of missing exons (rarely occurs)

WE = No of wrongly predicted exons (Figure-5)
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Gene Ontology

The gene ontology (GO, http:www.geneontology.org) is probably the most extensive scheme
today for the description of gene product functions but other systems such as enzyme codes,
KEGG pathways, FunCat, or COG are also widely used. Here, we describe the Blast2GO (B2G,
www.blast2go.org) application for the functional annotation, management, and data mining of
novel sequence data through the use of common controlled vocabulary schemas. The main
application domain of the tool is the functional genomics of nonmodel organisms and it is
primarily intended to support research in experimental labs. Blast2GO strives to be the
application of choice for the annotation of novel sequences in functional genomics projects
where thousands of fragments need to be characterized. Functional annotation in Blast2GO is
based on homology transfer. Within this framework, the actual annotation procedure is
configurable and permits the design of different annotation strategies. Blast2GO annotation
parameters include the choice of search database, the strength and number of blast results, the
extension of the query-hit match, the quality of the transferred annotations, and the inclusion
of motif annotation. Vocabularies supported by B2G are gene ontology terms, enzyme codes
(EC), InterPro IDs, and KEGG pathways.

Fig.7 shows the basic components of the Blast2GO suite. Functional assignments proceed
through an elaborate annotation procedure that comprises a central strategy plus refinement
functions. Next, visualization and data mining engines permit exploiting the annotation results
to gain functional knowledge. GO annotations are generated through a 3-step process: blast,
mapping, annotation. InterPro terms are obtained from InterProScan at EBI, converted and
merged to GOs. GO annotation can be modulated from Annex, GOSIlim web services and
manual editing. EC and KEGG annotations are generated from GO. Visual tools include
sequence color code, KEGG pathways, and GO graphs with node highlighting and filtering
options. Additional annotation data-mining tools include statistical charts and gene set
enrichment analysis functions.
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Fig. 7: Schematic Representation of Blast2GO Application.

The Blast2GO annotation procedure consists of three main steps: blast to find homologous
sequences, mapping to collect GO terms associated to blast hits, and annotation to assign
trustworthy information to query sequences.

Blast Step

The first step in B2G is to find sequences similar to a query set by blast. B2G accepts nucleotide
and protein sequences in FASTA format and supports the four basic blast programs (blastx,
blastp, blastn, and tblastx). Homology searches can be launched against public databases such
as (the) NCBI nr using a query-friendly version of blast (QBlast). This is the default option and
in this case, no additional installations are needed. Alternatively, blast can be run locally against
a proprietary FASTA-formatted database, which requires a working wwwe-blast installation.
The Make Filtered Blast-GO-BD function in the Tools menu allows the creation of customized
databases containing only GO annotated entries, which can be used in combination with the
local blast option. Other configurable parameters at the blast step are the expectation value (e-
value) threshold, the number of retrieved hits, and the minimal alignment length (hsp length)
which permits the exclusion of hits with short, low e-value matches from the sources of
functional terms. Annotation, however, will ultimately be based on sequence similarity levels
as similarity percentages are independent of database size and more intuitive than e-values.
Blast2GO parses blast results and presents the information for each sequence in table format.
Query sequence descriptions are obtained by applying a language processing algorithm to hit
descriptions, which extracts informative names and avoids low content terms such as
“hypothetical protein” or “expressed protein”.

Mapping Step
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Mapping is the process of retrieving GO terms associated to the hits obtained after a blast
search. B2G performs three different mappings as follows.

a. Blast result accessions are used to retrieve gene names (symbols) making use of two
mapping files provided by NCBI (geneinfo, gene2accession). Identified gene names are
searched in the species-specific entries of the gene product table of the GO database.

b. Blast result Gl identifiers are used to retrieve UniProt IDs making use of a mapping file
from PIR (Non-redundant Reference Protein database) including PSD, UniProt, Swiss-Prot,
TrEMBL, RefSeq, GenPept, and PDB.

c. Blast result accessions are searched directly in the DBXRef Table of the GO database.
Annotation Step

This is the process of assigning functional terms to query sequences from the pool of GO terms
gathered in the mapping step. Function assignment is based on the gene ontology vocabulary.
Mapping from GO terms to enzyme codes permits the subsequent recovery of enzyme codes
and KEGG pathway annotations. The B2G annotation algorithm takes into consideration the
similarity between query and hit sequences, the quality of the source of GO assignments, and
the structure of the GO DAG. For each query sequence and each candidate GO term, an
annotation score (AS) is computed (see Figure 8). The AS is composed of two terms. The first,
direct term (DT), represents the highest similarity value among the hit sequences bearing this
GO term, weighted by a factor corresponding to its evidence code (EC). A GO term EC is
present for every annotation in the GO database to indicate the procedure of functional
assignment.

DT = max [similarity » BCoeighe )

AT = (#G0O — 1) % GOpmighe

AR : lowestnode(AS(DT + AT) = threshold)

Fig. 8: Blast2GO Annotation Rule

ECs vary from experimental evidence, such as inferred by direct assay (IDA) to unsupervised
assignments such as inferred by electronic annotation (IEA). The second term (AT) of the
annotation rule introduces the possibility of abstraction into the annotation algorithm.
Abstraction is defined as the annotation to a parent node when several child nodes are present
in the GO candidate pool. This term multiplies the number of total GOs unified at the node by
a user defined factor or GO weight (GOw) that controls the possibility and strength of
abstraction. When all ECw’s are set to 1 (no EC control) and the GOw is set to 0 (no abstraction
is possible), the annotation score of a given GO term equals the highest similarity value among
the blast hits annotated with that term. If the ECw is smaller than one, the DT decreases and
higher query-hit similarities are required to surpass the annotation threshold. If the GOw is not
equal to zero, the AT becomes contributing and the annotation of a parent node is possible if
multiple child nodes coexist that do not reach the annotation cutoff. Default values of B2G
annotation parameters were chosen to optimize the ratio between annotation coverage and
annotation accuracy. Finally, the AR selects the lowest terms per branch that exceed a user-
defined threshold.
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Blast2GO includes different functionalities to complete and modify the annotations obtained
through the above-defined procedure. Enzyme codes and KEGG pathway annotations are
generated from the direct mapping of GO terms to their enzyme code equivalents. Additionally,
Blast2GO offers InterPro searches directly from the B2G interface. B2G launches sequence
queries in batch, and recovers, parses, and uploads InterPro results. Furthermore, InterPro IDs
can be mapped to GO terms and merged with blast-derived GO annotations to provide one
integrated annotation result. In this process, B2G ensures that only the lowest term per branch
remains in the final annotation set, removing possible parent-child relationships originating
from the merging action.
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Annotation of RNA-Seq Data (Practical)
Sneha Murmu
Introduction

Genome annotation is the process of identifying functional elements within a genome, such as
genes, regulatory regions, and repeat elements. The goal of genome annotation is to create an
accurate and comprehensive description of the genome's structure and function. This can be a time-
consuming process, but it is essential for understanding how genes and other functional elements

work together to control an organism's biology.

One powerful tool for genome annotation is Blast2GO (Conesa et al., 2005). Blast2GO is a
commercial bioinformatics software suite that provides comprehensive functional annotation of
nucleotide and protein sequences. It combines powerful sequence similarity search algorithms,
such as BLAST (Altschul etal., 1997) and HMMER (Finn et al., 2011), with functional annotation
tools, such as InterProScan (Zdobnov et al., 2001) and Gene Ontology (GO) mapping, to provide

a detailed functional analysis of genomic and transcriptomic data.

Blast2GO works by first performing a sequence similarity search, typically using BLAST, to
identify sequences with homology to known sequences in public databases. The resulting hits are
then annotated using a variety of functional annotation tools, including InterProScan, which
identifies conserved protein domains and functional motifs, and GO mapping, which assigns GO

terms based on the functional categories of annotated genes.

Blast2GO also includes tools for statistical analysis and data visualization, allowing users to
explore functional trends and patterns in their data. It can be used to analyze a wide range of
genomic and transcriptomic data sets. One of the strengths of Blast2GO is its user-friendly
interface, which allows even non-experts to perform complex functional annotation analyses.
Blast2GO is also highly customizable, allowing users to tailor the annotation process to their

specific needs and research questions.

Here are the four broad steps involved in genome annotation using Blast2GO:
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+ Sequence quality control and assembly: Before annotating a genome, it is important to ensure
that the quality of the sequencing data is high and that the genome has been properly
assembled. This may involve trimming low-quality sequences, filtering out contaminants, and
performing de novo assembly or mapping to a reference genome.

+ Sequence similarity search: The first step in genome annotation is to identify sequences with
homology to known sequences in public databases. This is typically done using BLAST or a
similar tool. The resulting hits can provide clues about the function and evolutionary
relationships of the sequences in question.

+ Functional annotation: Once sequences have been identified using a sequence similarity
search, functional annotation tools can be used to identify functional domains and motifs,
assign Gene Ontology terms, and perform other types of functional analysis. Blast2GO
includes a number of annotation tools, including InterProScan, which searches for conserved
domains and motifs in protein sequences, and GO mapping, which assigns Gene Ontology
terms based on the functional categories of annotated genes.

+ Data analysis and visualization: Once the sequences have been annotated with functional
information, the data can be analyzed and visualized in a variety of ways. Blast2GO includes
tools for statistical analysis and data visualization. The results of the analysis can be exported

in a variety of formats for further analysis.

Installation of Blast2GO:

Following are the general steps to install Blast2GO:

System requirements: Check that your computer meets the system requirements for Blast2GO.
Blast2GO is compatible with Windows, macOS, and Linux operating systems, and requires at least
8 GB of RAM.

Download Blast2GO: Visit the Blast2GO website (https://www.blast2go.com/) and download the

appropriate installation file for your operating system. You may need to create an account and
purchase a license, depending on your intended use of the software.

Install Blast2GO: Double-click the downloaded installation file and follow the on-screen
instructions to install Blast2GO (as depicted in Figure 1). You may need to provide administrator

permissions, depending on your operating system and security settings.
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4. Configure Blast2GO: Once Blast2GO is installed, you will need to configure it to work with your
specific computing environment. This may include setting preferences for sequence databases,
annotation tools, and other settings.

5. Activate license: If you have purchased a license for Blast2GO, you will need to activate it before
you can use the software. This typically involves entering a license key or activating the license
through an online portal.

Once Blast2GO is installed and configured, you can begin using it to analyze and annotate your

genomic or transcriptomic data.

1 ) % Setup - OmicsBox 2.0.36 - (] = * Set
. a 1! to the Omi Setup Wizard b )

This will install OmicsBox on your computer. The wizard will
lead you step by step through the Installation,

Select the folder where you would like OmicsBox to be installed, then click Next.

Browse ...

T YT

— [} >

< leting the Omi Setup Wizard d)

Setup has finished Installing OmicsBox on your computer. The [
application may be launched by selecting the installed icons.

Click Finish to exit Setup. @ OmicsBox

Run OmicsBox

G0 v 5op 1 2501

Figure 1: Installation steps of Blast2GO in Windows system.

Stepwise guide to perform annotation using Blast2GO

1. Open Blast2GO: Launch Blast2GO on your computer.

2. Load sequences: Load your sequence file(s) into Blast2GO. This can be done by clicking on
"Load data" in the main menu and selecting the appropriate file type (e.g., FASTA).

3. Run BLAST search: In the main menu, click on "Run BLAST" and select the appropriate
database for your search (e.g., NCBI non-redundant protein database) as shown in Figure 2.

You can choose to run a BLASTP (protein query against protein database) or a BLASTX
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(nucleotide query against protein database) search. You can also set various search parameters,

such as the e-value threshold and the maximum number of hits to return.

View BLAST results: Once the BLAST search is complete, you can view the results in the
BLAST results table (as shown in Figure 3). The table will show the sequence 1D, the best hit,

the e-value, the bit score, and other relevant information. You can sort the table by various

columns to help you identify the best hits.

Import BLAST results: To import the BLAST results into the Blast2GO annotation pipeline,

select the sequences you want to annotate and click on "Import selected hits". This will import

the BLAST results and link them to the appropriate sequences in the annotation pipeline.
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QBlast (blast2go_10005:

QBlast (bl 000s.

xample Datasets

100% Load Se

GO Version: Sep 12021
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® Blast Configuration
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[ blastx-fast 3
8l e
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® Progress| @ File Manager| @ Application Message 1o Be
oo PE Blast Hits 20 sle P
85% QBlast (blast2go_1000Sequ P
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QBlast (blast2go_1000Seque
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Figure 2: BLAST search.
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Figure 3: BLAST result.
Run InterProScan: In the main menu, click on "Run InterProScan™ and select the appropriate

database for your search (e.g., InterPro database). You can choose to run the search on protein

or nucleotide sequences (Figure 4a).
Set search parameters: You can set various search parameters, such as the e-value threshold,
the maximum number of sequences to align, and the type of analysis to perform (e.g., Pfam,

Prosite, SMART, etc.) (Figure 4b).
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10.

Figure 4: InterProScan search.

View InterProScan results: Once the InterProScan search is complete, you can view the results
in the InterProScan results table. The table will show the sequence 1D, the best match, the e-
value, the score, and other relevant information (Figure 5). You can sort the table by various

columns to help you identify the best matches.
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Figure 5: InterProScan result.

Import InterProScan results: To import the InterProScan results into the Blast2GO annotation
pipeline, select the sequences you want to annotate and click on "Import selected hits". This
will import the InterProScan results and link them to the appropriate sequences in the
annotation pipeline.

Perform mapping: Once the BLAST results have been imported, you can use the Blast2GO
mapping tools to map your sequences to Gene Ontology (GO) terms (Figure 6). This involves
using the BLAST results to transfer functional annotations from similar sequences to your own

sequences.
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11.

12.
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Figure 6: Mapping.

Edit mappings: You can edit the mappings manually, by adding or removing GO terms, or by
changing the evidence codes. You can also remove or filter out low-confidence mappings,
based on various criteria such as the e-value, the similarity score, or the GO term specificity.
Export mapping results: Once your sequences have been mapped, you can export the results in
a variety of formats, such as tab-delimited text files or FASTA files (Figure 7). These results

can be used for further analysis.
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Figure 7: Mapping result.

72



13. Annotate sequences: Once the InterProScan results have been imported, you can use the

Blast2GO annotation tools to assign functional information to your sequences (Figure 8). This

may include mapping Gene Ontology (GO) terms, performing enrichment analysis, and

performing other types of functional analysis.
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Figure 8: Annotate.

14. Export annotation results: Once your sequences have been annotated, you can export the results

in a variety of formats, such as tab-delimited text files or FASTA files. These results can be

used for further analysis, visualization, or sharing with collaborators.
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15. Generate Gene Ontology (GO) graph: To create a GO graph in Blast2GO, click on "Graphs"

in the main menu and select "GO Graph" (Figure 10). This will generate a graphical

representation of the GO terms assigned to your sequences, based on the hierarchical structure

of the Gene Ontology.
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Figure 10. Generate GO graph.

16. Customize GO graph: You can customize the appearance of the GO graph by changing the

colors, font sizes, or layout. You can also filter the GO terms based on various criteria such as
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the level in the hierarchy, the number of sequences assigned to the term, or the statistical
significance of the enrichment.

17. Analyze GO graph: Once you have generated a GO graph, you can use it to analyze the
functional annotations of your sequences. This can include identifying overrepresented or
underrepresented GO terms, comparing the GO profiles of different datasets or treatments, or
visualizing the relationships between different biological processes, molecular functions, or

cellular components (Figure 11).
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Figure 11: GO graph.

18. Export GO graph: Once you have customized and analyzed your GO graph, you can export it
in a variety of formats, such as PNG, PDF, or SVG. These graphs can be used for presentations,
publications, or further analysis with other tools or software.

19. Perform pathway analysis: To perform pathway analysis in Blast2GO, you need to use the
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. In the main menu,
click on "Annotation™ and select "Pathway annotation™. This will open the pathway annotation
dialog box (Figure 12).
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Figure 12. Run Pathway Analysis.

Select pathway database: In the pathway annotation dialog box, select the "KEGG" database
and click on "Start”. Blast2GO will download and install the latest version of the KEGG
database on your computer.

Run pathway analysis: Once the KEGG database is installed, you can use the Blast2GO
pathway analysis tools to identify the KEGG pathways that are enriched in your sequences.
This involves comparing the frequency of KEGG pathway terms in your sequences to the
frequency of these terms in a reference dataset, such as the entire KEGG database.

Filter and visualize pathways: Once the pathway analysis is complete, you can use the
Blast2GO pathway analysis tools to filter and visualize the enriched pathways. This can
involve setting statistical thresholds, such as the false discovery rate (FDR) or the p-value, or
selecting specific pathways based on their relevance to your research question.

Analyze pathways: Once you have identified the enriched pathways, you can use the Blast2GO
pathway analysis tools to analyze the functional annotations and gene products associated with
these pathways. This can include identifying the key enzymes or regulators, comparing the
pathway profiles of different datasets or treatments, or visualizing the relationships between

different metabolic or signaling pathways (Figure 13).
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Figure 13. Pathway graph.

24. Export pathway data: Once you have customized and analyzed your pathway data, you can
export it in a variety of formats, such as Excel, CSV, or XML. These data can be used for
further analysis with other tools or software, or for visualizing and communicating the results

of your pathway analysis.
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Overview of RNA-Seq Data Analysis

Mohammad Samir Farooqi and Sudhir Srivastava

Introduction

The advent of Next-Generation Sequencing (NGS) technology has transformed genomic
studies. One important application of NGS technology is the study of the transcriptome,
which is defined as the complete collection of all the RNA molecules in a cell. Various types
of RNA that have been classified so far are shown in Fig. 1. All of these molecules are called
transcripts since they are produced by process of transcription.

mRNA
rRNA '7 snoRNA scaRNA )
[ tRNA R
| Coding
snRNA
2 ( Non-
lincRNA \ Coding /
< rasiRNA
anti- / .
sense \_ RNAi
piRNA
miRNA
stRNA | siRNA

Fig. 1: Different types of RNA
(Image source: http://scienceblogs.com/digitalbio/2011/01/08/next-gene-sequencing)

Understanding the transcriptome is essential for interpreting the functional elements of the
genome and revealing the molecular constituents of cells and tissues, and also for
understanding development and disease [1]. The main purpose of transcriptomics are: to
catalogue all species of transcript, including mRNAs, non-coding RNAs and small RNAs; to
determine the transcriptional structure of genes, in terms of their start sites, 5’ and 3’ ends,
splicing patterns and other post-transcriptional modifications; and to quantify the changing
expression levels of each transcript during development and under different conditions.

The study of transcriptome is carried out through sequencing of RNAs. RNA sequencing
(RNA-Seq) is a powerful method for discovering, profiling, and quantifying RNA transcripts
[2]. RNA-Seq uses NGS datasets to obtain sequence reads from millions of individual RNAs.
The RNA-Seq analysis is performed in several steps: First, all genes are extracted from the
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reference genome (using annotations of type gene). Other annotations on the gene sequences
are preserved (e.g.CDS information about coding sequences etc). Next, all annotated
transcripts (using annotations of type mRNA) are extracted [3]. If there are several annotated
splice variants, they are all extracted. An example is shown in below Fig. 2(a).

Splice variant 2 [ |
Splice variant 1
Gene

[T

Fig. 2(a): A simple gene with three exons and two splice variants.

The given example is a simple gene with three exons and two splice variants. The transcripts
are extracted as shown in Fig. 2(b).

I

Splice variant 1 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGTACTGCAAAATACAACGTGATCACATTCCTTCCGAG

I

Splice variant 2 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGGTTATGAGAAGACAGATGATGTTTCAGAGAAGACCT!

Fig. 2(b): All the exon-exon junctions are joined in the extracted transcript.

Next, the reads are mapped against all the transcripts plus the entire gene [see Fig. 2(c)].

L
Splice variant 1 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGTACTGCAAAATACAACGTGATCACATTCCTTCCGAG

L
Splice variant 2 |
GGACAGTGTCGGAGATCCGCTCGCGCGCGGAAGGTTATGAGAAGACAGATGATGTTTCAGAGAAGACCT

Gene
ACTGCGGGGAGACCTAGGCGGCTCTGCGGACGCAGCTCCTTCGCCGCCTTCCCCCTCCCGTCCAGTGCC

Fig. 2(c): The reference for mapping: all the exon-exon junctions and the gene.
(Image source: CLC Genomic workbench tutorials)

From this mapping, the reads are categorized and assigned to the genes and expression values
for each gene and each transcript are calculated and putative exons are then identified.

RNA Sequencing Experiment

In a standard RNA-seq experiment, a sample of RNA is converted to a library of
complementary DNA fragments and then sequenced on a high-throughput sequencing
platform, such as Illumina's Genome Analyzer, SOLID or Roche 454 [4]. Millions of short
sequences, or reads, are obtained from this sequencing and then mapped to a reference
genome (Fig. 3). The count of reads mapped to a given gene measures the expression level of
this gene. The unmapped reads are usually discarded and mapped reads for each sample are
assembled into gene-level, exon-level or transcript-level expression summaries, depending on
the objectives of the experiment. The count of reads mapped to a given gene/exon/transcript
measures the expression level for this region of the genome or transcriptome.

One of the primary goals for most RNA-seq experiments is to compare the gene expression
levels across various treatments. A simple and common RNA-seq study involves two

79



treatments in a randomized complete design, for example, treated versus untreated cells, two
different tissues from an organism, plants, etc. In most of the studies, researchers are
particularly interested in detecting gene with differential expressions (DE). A gene is
declared differentially expressed if an observed difference or change in read counts between
two experimental conditions is statistically significant, i.e. if the difference is greater than
what would be expected just due to random variation [5]. Detecting DE genes can also be an
important pre-step for subsequent studies, such as clustering gene expression profiles or
testing gene set enrichments.

mMRNA
or [AAADAAAA
= —_—
RNA fragments l cDNA
EST library

with adaptors

|

ATCACAGTGGGACTCCATAAATTTTTCT
CGAAGGACCAGCAGAAACGAGACEENYYY Short sequence reads
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGAA

|

ORF
Coding sequence =

Exonic reads

EE

poly(A) end reads

Mapped sequence reads

Base-resolution expression profile

A A AN
\/\ ?"‘r/l\f'\ ’;r'm\ﬁf\/ \ Flrl \H/ "f W v "
” u \f Y |
Fig. 3: General RNA-seq experiment. mRNA is converted to cDNA, and fragments

from that library are used to generate short sequence reads. Those reads are assembled
into contigs which may be mapped to reference sequences (Wang et al., 2009).

RNA expression level

Nucleotide position

Analysing RNA-Seq data

RNA-seq experiments must be analyzed with robust, efficient and statistically correct
algorithms. Fortunately, the bioinformatics community has been striving hard at work for
incorporating mathematics, statistics and computer science for RNA-seq and building these
ideas into software tools. RNA-seq analysis tools generally fall into three categories: (i) those
for read alignment; (ii) those for transcript assembly or genome annotation; and (iii) those for
transcript and gene quantification. Some of the open source softwares available for RNA-seq

analysis are as follows:
« Data preprocessing
+ Fastx toolkit

* Samtools
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« Short reads aligners
» Bowtie, TOPHAT, Stampy, BWA, Novoalign, etc
» Expression studies
* Cufflinks package
* R packages (DESeq, edgeR, more...)
» Visualisation
* CummeRbund, IGV, Bedtools, UCSC Genome Browser, etc.

Besides there are commercially data analysis pipelines like GenomeQuest, CLCBio etc
available for researchers to use. The most commonly used pipeline is to identify protein
coding genes by aligning RNA-Seq data to annotate data from sources like RefSeq. After
generating the alignments, the number of aligning sequences is counted for each
position. Since each alignment represents a transcript, the alignments allow to count the
number of RNA molecules produced from every gene.

Using NGS technology, RNA-Seq enables to count the number of reads that align to one of
thousands of different cDNAs, producing results similar to those of gene expression
microarrays [6]. Sequences generated from an RNA-Seq experiment are usually mapped to
libraries of known exons in known transcripts. RNA-Seq can be used for discovery
applications such as identifying alternative splicing events, allele-specific expression, and
rare and novel transcripts [7]. The sequencing output files (compressed FASTQ files) are the
input for secondary analysis. Reads are aligned to an annotated reference genome, and those
aligning to exons, genes and splice junctions are counted. The final steps are data
visualisation and interpretation, consisting of calculating gene- and transcript-expression and
reporting differential expression. A general Bioinformatics workflow to map transcripts from
RNA-seq data is shown in Fig. 4.
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Fig. 4: RNA-seq workflow (Adapted from Advancing RNA-Seq analysis Brian J.
Haas and Michael C. Zody Nature Biotechnology 28, 421-423 (2010)

RPKM (Reads per KB per million reads)

RNA-Seq provides quantitative approximations of the abundance of target transcripts in the
form of counts. However, these counts must be normalized to remove technical biases
inherent in the preparation steps for RNA-Seq, in particular the length of the RNA species
and the sequencing depth of a sample. The most commonly used is RPKM (Reads Per
Kilobase of exon model per Million mapped reads). The RPKM measure of read density
reflects the molar concentration of a transcript in the starting sample by normalizing for RNA
length and for the total read number in the measurement [8]. RPKM is mathematically
represented as:

total exon reads

RPKM =

mapped reads (millions) X exon length (KB)
Total exon reads

This is the number of reads that have been mapped to a region in which an exon is annotated
for the gene or across the boundaries of two exons or an intron and an exon for an annotated
transcript of the gene. For eukaryotes, exons and their internal relationships are defined by
annotations of type mRNA.

Exon length

This is calculated as the sum of the lengths of all exons annotated for the gene. Each exon is
included only once in this sum, even if it is present in more annotated transcripts for the gene.
Partly overlapping exons will count with their full length, even though they share the same
region.

Mapped reads

The total gene reads for a gene is the total number of reads that after mapping have been
mapped to the region of the gene. A gene's region is that comprised of the flanking regions,
the exons, the introns and across exon-exon boundaries of all transcripts annotated for the
gene. Thus, the sum of the total gene reads numbers is the number of mapped reads for the
sample.

Applications of RNA-seq
This technique can be used to:
« Measure gene expression
« Transcriptome assembly, gene discovery and annotation

o Detect differential transcript abundances between tissues, developmental stages,
genetic backgrounds, and environmental conditions

o Characterize alternative splicing, alternative polyadenylation, and alternative
transcription.

Future Directions
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Although RNA-Seq is still in the infancy stages of use, it has clear advantages over
previously developed transcriptomic methods. Compared with microarray, which has been
the dominant approach of studying gene expression in the last two decades, RNA-seq
technology has a wider measurable range of expression levels, less noise, higher throughput,
and more information to detect allele-specific expression, novel promoters, and isoforms [9].
For these reasons, RNA-seq is gradually replacing the array-based approach as the major
platform in gene expression studies. The next big challenge for RNA-Seq is to target more
complex transcriptomes to identify and track the expression changes of rare RNA isoforms
from all genes. Technologies that will advance achievement of this goal are pair-end
sequencing, strand-specific sequencing and the use of longer reads to increase coverage and
depth. As the cost of sequencing continues to fall, RNA-Seq is expected to replace
microarrays for many applications that involve determining the structure and dynamics of the
transcriptome.
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Transcriptomic Data Analysis with R

Soumya Sharma!
1ICAR-IASRI

Identification of differentially expressed genes from the RNA-Seq data is an important area of

bioinformatics data analysis. There are several packages available in R to carry out the differential

gene expression analysis, like DESeq?2 (Love et al., 2014), edgeR (Robinson et al., 2010), limma

(Smyth et al., 2005) etc. After preprocessing and quantification of reads in RNA-Seq data, we get

a matrix of read counts of each gene in every sample. Then we can use the “DESeq2” package to

identify differentially expressed genes. Here, we demonstrate the differential gene expression

analysis with R using a sample dataset available in the R package airway (Himes et al., 2014) in

following steps.

)} Download the sample dataset from the “airway” package. The package contains 2 data

files. One file contains read counts of 64102 genes in 8 samples obtained from the RNA-
Seq experiment on 4 primary human airway smooth muscle cell lines treated with 1
micromolar dexamethasone for 18 hours. Another file contains sample-wise metadata
information, viz., treated or untreated. Import the count matrix and metadata file into
RStudio.

R code to collect sample dataset from “airway” package:

# installing Bioconductor packages
if ('requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")
BiocManager::install("airway")
library(airway)
data(airway)
airway
sample_info <- as.data.frame(colData(airway))
sample_info <- sample_info[,c(2,3)]
sample_info$dex <- gsub('trt', 'treated’, sample_info$dex)

sample_info$dex <- gsub(‘untrt’, 'untreated’, sample_info$dex)
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names(sample_info) <- c(‘cellLine’, 'dexamethasone’)
# Get the samplewise metadata file

write.table(sample_info, file = "/sample_info.csv", sep =",, col.names = T, row.names = T, quote
= F)

# Get the matrix of read counts for each gene in every sample
countsData <- assay(airway)

write.table(countsData, file = "/counts_data.csv", sep =',', col.names = T, row.names = T, quote =
F)

i) Then we have to load the package “DESeq2” to perform the subsequent differential
gene expression analysis. We have to create a DESegDataSet object and then run the
‘DESeq()’ function to perform the said analysis.

Differential gene expression analysis using the “DESeq2” package in R

BiocManager::install("DESeq2")

library(DESeq2)

# read in counts data

counts_data <- read.csv('/counts_data.csv’)

# read in sample info

colData <- read.csv('/sample_info.csv')

# making sure the row names in colData matches to column names in counts_data
all(colnames(counts_data) %in% rownames(colData))

# are they in the same order?

all(colnames(counts_data) == rownames(colData))

dds <- DESegDataSetFromMatrix(countData = counts_data, colData = colData, design = ~
dexamethasone)

dds

#pre-filtering: removing rows with low gene counts
# keeping rows that have at least 10 reads total
keep <- rowSums(counts(dds)) >= 10

dds <- dds[keep,]

# set the factor level
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dds$dexamethasone <- relevel(dds$dexamethasone, ref = "untreated")

dds <- DESeq(dds)

res <- results(dds)

res

summary(res)

res0.01 <- results(dds, alpha = 0.01) # When padj = 0.01

summary(res0.01)

Here, we are trying to find the genes which are differentially expressed in Dexamethasone treated
conditions as compared to untreated conditions. Hence, the reference level is set as ‘untreated’.
After the analysis, the result contains base means, logz2FoldChange values, p-values, adjusted p-
values, etc. for each gene. If at 1% level, the adjusted p-value for a gene is found as > 0.01, it means
the result has been obtained purely by chance, i.e., a non-significant result. Otherwise, that gene is
differentially expressed if the adjusted p-value is < 0.01. In the latter case, if the log2FoldChange
value is > 0, the gene is upregulated and if it is < 0, then that gene is downregulated. Thus, we can
find out differentially expressed genes using R.

iii) Visualization of differentially expressed genes in R. After identifying differentially
expressed genes, we can visualize the result in terms of various plots such as MA plot,
volcano plot, heatmap, etc. Several R packages are available to develop these plots. MA
plot can be generated using the ‘plotMA()’ function. We can use the “ggplot2” package
to develop volcano plot. Similarly, R package “heatmap2”, “pheatmap” etc. are useful
to create heatmaps. MA plot (fig 1), volcano plot (fig 2) and heatmap (fig 3) created

from the result of the previous analysis.

R code to visualize the result of differential gene expression analysis
# MA plot

plotMA(res)

# Volcano plot

library(ggplot2)
library(tidyverse)
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df<-as.data.frame(res)

df$diffexpressed <- "non-significant"

# if log2Foldchange > 0 and padj < 0.01, set as "UP"
df$diffexpressed[df$log2FoldChange > 0 & df$padj < 0.01] <- "UP"

# if log2Foldchange < 0 and padj < 0.01, set as "DOWN"
df$diffexpressed[df$log2FoldChange < 0 & df$padj < 0.01] <- "DOWN"

ggplot(df, aes(log2FoldChange, -log10(padj), col=
diffexpressed))+geom_point()+scale_color_manual(values = c(""red", "black™, "green™))

# Developing Heatmap of first 10 genes for better demonstration
library(pheatmap)

library(RColorBrewer)

breaksList = seq(-0.4, 0.5, by = 0.04)

rowLabel = row.names(counts_data[1:10,])

pheatmap(df$log2FoldChange[1:10], color = colorRampPalette(c("dark blue™, "white",
"yellow"))(25), breaks = breaksList, border_color = "black", cellheight = 25, cellwidth = 25,
cluster_rows = F,cluster_cols = F, fontsize = 12, labels_row = rowLabel)

log fold change

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05

mean of normalized counts

Fig 1: MA plot showing significantly upregulated and downregulated genes as blue dots.
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Fig 2: Volcano plot representing upregulated genes as green, downregulated genes as red and
non-significant genes as black dots.
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Fig 3: Heatmap representing the expression levels of first 10 genes in terms of
log2FoldChange values in a scale of -0.4 to 0.4 where, blue colour represents downregulated
genes, yellow represents upregulated genes and expression levels of remaining genes are

represented by gradation of colour between blue and yellow.
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Single-Cell RNA-Seq Data Analysis

Sudhir Srivastava and Mayank Rashmi

Introduction

Over the past two decades, the development of advanced high-throughput technologies has
transformed research across diverse fields, including biomedicine, agriculture, and environmental
sciences, by enabling investigations at the cellular and subcellular levels. The term ‘omics’ refers
to the comprehensive studies of the genome, transcriptome, epigenome, proteome, and
metabolome of a given sample using high-throughput approaches. Single-cell sequencing is a
powerful approach that profiles individual cells to study their genome, transcriptome, epigenome,
proteome, and other omics layers. Traditional sequencing, also known as bulk sequencing,
analyzes the DNA or RNA from a group of cells, providing an average signal across the population.
While useful for identifying general patterns in large groups of cells, bulk sequencing cannot
capture the unique differences between individual cells. As a result, bulk sequencing is less
suitable for studying complex systems with diverse cell types or for detecting rare cell populations
and subtle cellular variations. Single-cell sequencing is a newer technology that enables the
exploration of genomics, transcriptomics, and other omics layers at single-cell resolution, allowing
researchers to distinguish cell populations, track cellular responses, and uncover evolutionary
relationships among cells. To date, a number of technologies have been proposed for single-cell
transcriptomic studies, and these are differentiated by at least one of the aspects, like cell isolation,
cell lysis, reverse transcription, amplification, transcript coverage, strand specificity, and unique
molecular identifiers (UMIs). UMI detects and quantifies the availability of unique transcripts.
Single-cell RNA Sequencing (scRNA-Seq) allows the comparison of transcriptomes at the level
of individual cells. Its major application is to assess transcriptional similarities and differences
within a cell population. This enables the identification of rare cell types, characterization of
cellular heterogeneity, analysis of developmental trajectories, and investigation of disease-
associated transcriptional changes. SCcRNA-Seq was studied for the first time in 2009 by Tang and
their group. Several other next-generation sequencing (NGS)-based assays have been updated for
single-cell methods in addition to single-cell RNA-seq. These include assays for genomics,
proteomics, and epigenetics, particularly single-cell ATAC-sequencing, which is frequently

carried out in combination with scRNA-Seq. Various SCRNA-Seq platforms and techniques differ

90



in terms of transcript coverage (3'/5' tag-based vs. whole-transcript) and throughput (number of
cells), and are used to analyse differently. Single-cell RNA sequencing helps in quantification of
MRNA expression levels in each cell. The Transposase-Accessible Chromatin Assay for Single-
cell Assay utilizing Sequencing (SCATAC) describes the openness of cis-regulatory elements in
neighboring genes. When scRNA-Seq and scATAC data are analyzed together, they can reveal
gene regulatory linkages associated with cellular heterogeneity and enhance the critical genetic
information from other omics. Single-cell DNA sequencing (ScCDNA-seq) technologies offer an
unusual opportunity to examine individual cell clonality and the sequence of mutations, both
factors that have a big impact on therapeutic results by analyzing DNA mutations and copy number

variations.

General Workflow of Single-cell Sequencing

Single-cell sequencing is a process that isolates a single cell for sequencing, then studies molecular
mapping, cell heterogeneity, epigenetic change, and immune infiltration. Firstly, isolate the single
cells from a tissue sample of interest that includes a few steps, like micro-dissection, microfluidic
platforms, and droplet-based methods. Next to perform a list of single tasks in a way that preserves
cellular mRNA. mRNA molecule captured by using poly(T) sequence primers that bind to mMRNA
poly(A) tails. Then convert poly (T)-primed mMRNA into cDNA using reverse transcription. This
reverse transcribed cDNA is usually amplified by PCR or in vitro transcription. A cDNA library
is prepared by inserting index nucleotide barcodes that identify each library. After that pooled the
cDNA libraries and made the sequencing libraries by NGS techniques.

There are many commercial kits and reagents are now available for the entire wet-lab
procedure for sScRNA-Seq. The steps from the beginning (lysing cells) to the end (sequencing) are
depicted below in Figure 1. The workflow for sScRNA-Seq data generation, from the initial step of
cell lysis to the final step of sequencing, is depicted in Figure 1. Some of them are based on the
switching mechanism at 5’ end of RNA template (SMARTer) procedure for mRNA capture,
reverse transcription, and cDNA amplification. More recently, a number of droplet-based
platforms like Chromium from 10x Genomics, ddSEQ from Bio-Rad Laboratories, InDrop from

1CellBio, and pEncapsulator from Dolomite Bio/Blacktrace Holdings are commercially available.
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Figure 1. Basic steps of single-cell sequencing

A comparison of different scRNA-Seq technology and experimental protocols is given below in

Table 1.
Table 1: A comparison of different scRNA-seq technology and experimental protocols
Platform / Transcript Lo
Protocol Capture Strategy Coverage Throughput | Strengths Limitations
Smart-Seq / Plate-based (FACS) | Full-length | Hundreds dH(eiger:;tieQ Sliitl\éity’ Low throughput,
Smart-Seq?2 g . P expensive per cell
variants
. s Automated Limited cell
Fluidigm C1 I(\gilﬁr?;(!gé?llightlﬁre) Full-length | Hundreds handling, high- number,
g P quality cDNA expensive chips
i i i Very sensitive, Low throughput,
MATQ-seq ;Dnlatet based / low Full-length -I[I?Jr;sdre ds works for low specialized
P RNA input protocol
i - .- . High throughput, | Lower sensitivity,
Drop-seq Droplet microfluidics | 3’-end Thousands low cost more dropouts
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Experimental design plays a pivotal role in SSRNA-Seq studies. Before selecting a protocol, it is
essential to carefully assess key factors that may affect data quality, cost, and the biological
insights obtained. First, the number of cells to be sequenced per experiment must be considered.
This largely depends on the overall heterogeneity of the sample and the expected proportion of
specific cell types, based on prior knowledge. An online estimator developed by the Satija Lab
provides guidance on how many cells should be sampled in an scCRNA-seq experiment to reliably
capture a minimum number of cells from each cell type within the dataset
(https://satijalab.org/howmanycells/). Second, cell size is an important factor. Each platform has
its limitations in handling cells of different sizes. Smaller cells (typically < 25 um in diameter) can
usually be processed with minimal damage, whereas larger or irregularly shaped cells, such as
adult cardiomyocytes and neurons, pose greater challenges. In such cases, single-nucleus RNA
sequencing (SNRNA-Seq) can serve as a practical alternative. Third, minimizing technical biases
remains critical. Although new analytical methods continue to improve bias correction,
distinguishing true biological variation from technical noise is still challenging. Therefore, careful

experimental design that reduces confounding factors is essential.

Single-Cell Data Analysis

Sequenced data of SCRNASs can be generated experimentally or retrieved from public repositories
such as GEO, SRA, scRNASeqDB, and PlantscRNAdb, etc. Depending on the library preparation
method used, the RNA sequences (reads or tags) may be derived either from the 3’ ends or 5' ends
of the transcripts (e.g., 10X Genomics, CEL-seq2, Drop-seq, inDrops) or from full-length
transcripts (e.g., Smart-seq). Sequenced data is further analyzed by bioinformatics pipeline using

various software and tools. The basic steps of SCRNA-Seq data analysis are discussed below.
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Figure 2. Basic steps of SCcRNA-Seq data analysis

Preprocessing raw scRNA-Seq data: This step involves various steps such as formatting

reads, demultiplexing samples, quality control, trimming, mapping, and quantification.

Assigns clusters to
a sample, based on
cluster's index
sequence

Check the quality
of the reads by
FastQC

Demultiplexing

Quality Check

Trim sequencing adapters and/or low quality
reads from the ends of reads by Trimmomatic
or Trim Galore

Trimming Reads

Good quality reads
aremap toa
reference genome
by STAR

Quantified gene
expression matrix
by Cellranger

Read alignment Count matrix
generation

Figure 3. Processing of sScRNA sequencing data
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» Demultiplexing: Raw single-cell transcriptome sequencing data are typically
generated in either FASTQ or BCL format, depending on the sequencing platform.
Since only FASTQ files can be directly used for quality control, BCL files must
first be converted into FASTQ format using appropriate tools. For example, the
cellranger mkfastq pipeline, which wraps the bcl2fastq software, is commonly used
for this conversion. A simple CSV sample sheet containing at least three columns
(lane, sample, and index) must be provided along with the BCL file path. Once
converted, the resulting FASTQ files can be assessed for quality using tools such
as FastQC.

» Quality control: In sScRNA-Seq experiments, some low-quality data are generated
from cells that are broken, dead, or contaminated with multiple cells. Such low-
quality cells can negatively impact downstream analyses and lead to
misinterpretation of results. FastQC is a widely used tool for general quality checks
and noise removal, while SinQC and Scater are commonly applied for sScRNA-Seg—
specific quality control.

» Trimming: This step removes sequencing adapters and low-quality bases from the
ends of reads to improve data reliability. After trimming, data quality is reassessed
to ensure clean input for downstream analysis. Commonly used trimming tools for
scCRNA-seq include Trimmomatic, Cutadapt, TrimGalore, fastp, etc.

» Mapping: High-quality reads are aligned to a reference genome to identify their
gene of origin. STAR is widely used for sScRNA-Seq, as it efficiently finds the
longest matching sequence within the reference genome. Alternative aligners such
as HISAT2, Kallisto, and Salmon are also employed, depending on the analysis
goals and computational requirements. Unlike traditional alignment, Kallisto and
Salmon use pseudoalignment, which rapidly assigns reads to transcripts without
fully mapping each base, thereby reducing computational time and memory usage.
Unique Molecular Identifiers (UMIs), which are short molecular tags added to
transcripts prior to sequencing, help correct for amplification bias. Reads sharing
the same UMI, gene, and cell barcode are collapsed into a single count, ensuring

more accurate quantification.
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» Quantification/ Count matrix formation: The number of reads or UMIs mapping
to each gene is counted for every cell. In the resulting count matrix, genes are
represented as rows and cells as columns, with each entry indicating the quantified
expression level of a gene in a specific cell. For 10X Genomics data, the count
matrix is typically generated using the Cell Ranger pipeline. Other commonly used
quantification tools include STARsolo, Kallisto|bustools, Salmon/Alevin, HTSeq,
Drop-seq Tools, etc. which provide flexibility for different SSRNA-Seq platforms

and analysis needs.

Celll Cell2 Cell3 ... CellN
Genel 4 8 22 . 13
Gene2 7 2 3
Gene3 1 3 9
GeneM 30 0 17 . 5

Figure 4. Count matrix representation

e Batch Effect Correction: The large data is generated in different scales of time, and
sometimes data is produced by different laboratories using various protocols, library
preparation, and sequencing platforms. So, there is some technical and biological
variability, as well as systematic errors are defined as batch effects. The two batch
correction methods are MNN (mutual nearest neighbor), used for similar cells in different
batches, and KBET (k-nearest neighbor batch effect test), based on the y2 method.

e Normalization and Clustering: Normalization of scRNA-Seq data is a critical step to
remove technical biases (e.g., sequencing depth, capture efficiency) and enable meaningful
biological comparisons. Common normalization approaches include log-normalization,
scaling by library size, and advanced methods such as SCTransform (Seurat) or scran.
Imputation is often applied to address missing values or dropouts, with tools such as
MAGIC, SAVER, scimpute, and ALRA helping to recover gene expression signals. After
normalization and imputation, dimensionality reduction and clustering are performed to
explore cell-to-cell variability. Linear methods such as Principal Component Analysis
(PCA) are used for initial dimensionality reduction, while non-linear approaches like t-
SNE (t-distributed stochastic neighbor embedding) and UMAP (Uniform Manifold
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Approximation and Projection) are widely used for visualization and clustering of cell
populations.

Marker Identification and Analysis: Marker identification is a key step in SCRNA-Seq
analysis to discover disease-relevant genes, understand transcriptional dynamics, and
characterize both protein-coding and noncoding RNAs at the single-cell level. The key
goals of the SCRNA-Seq data analysis are as follows:

Identify cell subpopulations (which are often distinct cell types) within a specific condition
or tissue to unravel the heterogeneity of cells

Methods/Tools: Clustering (Seurat, Scanpy, SC3, SIMLR), trajectory inference (Monocle,
Slingshot, PAGA).

Find the significantly differentially expressed genes between distinct subpopulations or
groups of cells

Methods/Tools: Seurat (FindMarkers), DESeg2, edgeR, MAST, limma-trend

Alternative splicing: For the alternative splicing, generally five basic modes are
recognized, including exon-skipping (cassette exon), mutually exclusive exons, alternative
donor site, alternative acceptor site, and intron retention.

Methods/Tools: Seurat (FindMarkers), DESeg2, edgeR, MAST, limma-trend.

Detection of RNA-editing dynamics

Tools: REDItools, RNAEditor, RES-Scanner, GIREMI.

Identification of equally expressed genes between parental and maternal genomes by allelic
expression analysis

Tools: WASP, ASEReadCounter (GATK), MBASED, scBASE.

Gene regulatory network inference: The goal is to reveal transcription factor—target
relationships and regulatory modules.

Tools: REDItools, RNAEditor, RES-Scanner, GIREMI

Advantages of Single-Cell Sequencing

Genetic material at the single-cell level can be studied with the help of single-cell
sequencing. This offers a deeper understanding of the variations inside cells.
Rare cell types that are not identified by bulk sequencing can be found using it. This is

helpful in areas like immunology and cancer studies.
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In a particular tissue, it offers extensive information about individual cells.

By analyzing the cellular diversity and composition of every cell in a tissue sample, it can
be employed to investigate complicated biological systems.

It helps to improve our knowledge of complexities in tissues and various cell types.

Limitations of Single-Cell Sequencing

The high cost of single-cell sequencing restricts its use in extensive research.

Cells may experience stress during the isolation process that influences their viability and
characteristics.

Single-cell sequencing data is noisier than bulk sequencing data, which makes it less
reliable.

A large amount of data is missing or has zero values because single-cell sequencing
frequently fails to identify every gene in every cell. It is possible that certain genes exist in
a cell but are not detected by sequencing. Data analysis may be challenging due to this
sparsity.

Because it is gathered from a single cell, the data may not be accurate. It might be
challenging to determine which measures are accurate and which are the result of
technological mistakes.

Accurately detecting genetic changes in individual cells can be challenging due to the
potential for errors and biases introduced by the amplification step.

Applications of Single-Cell Sequencing

Single-cell sequencing has uses in developmental biology, neurology, diabetes, and cancer
research, among other scientific areas.

Finding genetic differences within tumor cells is helpful in the study of cancer. It helps in
understanding the nature of cancer cells and how they function. It is also helpful in the
development of targeted therapies.

Immunology uses it to investigate various immune cells and how they contribute to various
diseases.

In developmental biology, it supports the study of cellular differentiation and the

modifications that take place throughout processes like embryogenesis.
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e Through the identification of microbial species and their genetic composition, as well as
functions in various processes such as antibiotic resistance, single-cell sequencing is also
helpful in the study of microbes.

e It is also helpful for understanding the causes of diseases and for clinical diagnostics. It
facilitates the identification of unusual or unique cell types and is also helpful for the

development of treatment methods for various diseases.

Conclusion

Over the past 13 years, numerous sSCRNA-Seq protocols have been developed to enhance our
understanding of cellular expression variability and dynamics. These methods enable the study of
highly heterogeneous samples, including clinical specimens that have undergone fixation or
freezing, thereby broadening the scope of experimental applications. Advanced computational
analyses of sScRNA-Seq data have driven the growth of single-cell transcriptomics, providing
powerful tools for both biological and clinical research. By resolving gene expression at single-
cell resolution, scRNA-Seq offers deep insights into cellular heterogeneity, transcriptional
dynamics, and the regulatory mechanisms underlying diverse biological processes and disease

states.
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MIiRNA ldentification and Target Prediction

Anu Sharma and Sarika Sahu

Introduction

According to Central Dogma of Biology, there is one DNA in a nucleus which is transcribed into
one mMRNA and mRNA is translated into protein. However, some years back it was apparent that
some of the genes generate other RNAs and these RNAs are non-translated but they get altered at
the RNA level and bind with other RNAs thereby inhibiting the protein formation (Fig. 1 and Fig.
2). A large group of these non-coding RNAS are microRNA.

Aaihes  Protein

Fig.1: Gene Expression Pathway

Fig.2: miRNA Regulation

The first described microRNA, lin-4 was cloned and characterised as a translational repressor of
developmental timing from Caenorhabditis. Elegans[1-2]. The transcript of this gene was highly
unusual as it was non-coding, and produced extremely small transcripts (22nt) from hairpin
structured RNA precursors. Second microRNA, let-7 was also cloned from C.elegans [3].
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MicroRNAs primarily function as translational repressors by binding to complementary target
sequences in the 3° UTR (untranslated region) of mRNA.

The miRNAs are involved in numerous cellular processes in each stage of growth, development,
proliferation, differentiation, stress, diseases, transgene suppression, signalling pathway and
defence against the viruses [4-8]. Another important property of miRNAs is their conservation
among different organisms [9-11]. Different approaches used for miRNA identification includes,
gene cloning technology and bioinformatics strategies. Gene cloning is a conventional method to
identify the new miRNA accurately, even though it has disadvantages, such as problem of finding
miRNAs with low expression, difficulty in cloning, degradation of RNA during sample separation
etc. [12]. Rapid development in the field of bioinformatics leads to number of computational
programs and other tools to successfully predict the miRNA [13, 14]. Biogenesis of microRNAs
is explained in section 2.

MicroRNA Biogenesis

Mature microRNAs are short, single-stranded RNA molecules approximately 22 nucleotides in
length. MicroRNAs are sometimes encoded by multiple loci, some of which are organized in
tandemly co-transcribed clusters. MicroRNA genes are transcribed by RNA polymerase 11 as large
primary transcripts (pri-microRNA) that are processed by a protein complex containing the RNase
1l enzyme Drosha, to form an approximately 70 nucleotide precursor microRNA (pre-
microRNA). This precursor is subsequently transported to the cytoplasm where it is processed by
a second RNase 11l enzyme, DICER, to form a mature microRNA of approximately 22 nucleotides
(Figure 1). The mature microRNA is then incorporated into a ribonuclear particle to form the RNA-
induced silencing complex, RISC, which mediates gene silencing. This process is shown in Fig. 3.
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Fig.3: miRNA Biogenesis

Next section describes in detail the computational approach for miRNA prediction and target
identification.

1) Computational Prediction and Target Identification
Procedure for computational identification and target prediction is given below:

Stepl->Data Preparation: search miRNAs homologues from available online databases and
download the genomic sequence of the organism under study.

Stepl->homology search: Perform a BLASTn search for mRNA sequences in the whole
genome assembly sequence of an organism with the e-value <= 0.01 and other default
parameters including low complexity filter. Three criteria may be used for screening BLAST
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results (1) more than 95% identity between each potential miRNA and the corresponding
miRNA in the reference set (known as miRNA homologue); (2) the length difference between
each potential miRNA and the corresponding miRNA in the reference set should not more than
three bases; (3) the length of the potential miRNA should be between 19-24 nucleotides.

Step2->Secondary structure validation: Extract Pre-miRNA sequences using a sliding
window of about 100 nucleotides (nt) in size (moving in increments of approximately 10 nt)
from the region ~80 nt upstream of the beginning of the mature miRNA to ~80 nt downstream
of the mIiRNA. Submit the extracted mIRNA precursor sequences to Mfold
(http://www.bioinfo.rpi.edu/applications/mfold/rna/form1.cgi) for checking of the fold-back
secondary structure.

The following steps were considered for screening the candidate miRNA homologs:

i. The RNA sequence folding into an appropriate stem-loop hairpin secondary structure that
contains the ~22 nt mature miRNA sequence located in one arm of the hairpin structure;

ii. The predicted mature miRNAs with no more than 6 mismatches with the opposite miRNA
sequence in the other arm;

iii. maximum size of 7 nt for a bulge in the miRNA sequence;

iv. miRNA precursors with secondary structures free energy change (AG) less than or equal to
-37kcal/mol;

v. The A+U content of pre-miRNA within 30-70% are considered,
vi. no loop or break in miRNA sequences should be there.

These criteria significantly reduced false positives.
Step3->ldentification of putative candidate miRNA sequences

This step involves the distinction between the real pre-miRNAs from other hairpin sequences
with similar stem-loops (pseudo pre-miRNAS) using suitable tools e.g. MiPred

Step4-> Target prediction and Functional Annotation

Two set of sequences were taken for target prediction. Firstly, miRanda software was used for
target prediction with inputs as predicted miRNAs and 3'UTR sequences of organism. The
values for miRanda parameters may be selected as follows: Smith—-Waterman hybridization
default alignment score'® greater than or equal to 80, minimum free energy (MFE) of
miRNA::mRNAY less than or equal to —20kcal/mol and the other parameters with default
values.

Secondly, mRNA sequences of are blasted with miRNA sequences using two approaches
(1) BLASTN and (2) psRNATarget http:/plantgrn.noble.org/psRNATarget/?function=38,
miRNA-target alignments may be screened on the basis of three empirical rules (position count
starting from 5’ end of the miRNA): (1) no mismatches at positions 2 to 7 (seed region); (2)
not more than one G : U pairing allowed in the seed region; and (3) not more than one gap
allowed in the alignment. Functional annotation of predicted miRNAs may be done with GO.
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Extraction of premiRNA sequences by taking sliding window of 100 nt
with the increment of 10 nt from +80 nt of miRNA hit position
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Fig. 4: An overview of different steps involved in microRNA prediction
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2) Online MicroRNAs resources
Table 1. Selected online resources [15]

Application name Type

Web address

miRBase miRNA sequence and http://www.mirbase.org
annotation archive
smirnaDB miRNA expression http://www.mirz.unibas.ch/cloningprofiles
database
microRNA.org — miRNA expression http://www.microrna.org/microrna/getExprForm.do
miRNA Expression | database
mIRNEYE miRNA expression http://mirneye.tigem.it
database
S-MED//CC-MED miRNA expression http://www.oncomir.umn.edu/SMED & http://www
database .oncomir.umn.edu/colon/basic_search.php

TargetScan miRNA target prediction | http://www.targetscan.org

DIANA-microT- miRNA target prediction | http://www.microrna.gr/microT-CDS

CDS

microRNA.org miRNA target prediction | http://microrna.org

miRDB miRNA target prediction | http://www.mirdb.org

RNA22 mIiRNA target prediction | http://cm.jefferson.edu/rna22v1.0-homo_sapiens

TargetMiner miRNA target prediction

http://www.isical.ac.in/~bioinfo miu/targetminer20
.htm

PicTar miRNA target prediction

(http://pictar.mdc-berlin.de)

DIANA-TarBase Manually curated
validated mirna target

database

http://www.microrna.gr/tarbase

miRTarBase Manually curated
validated mirna target

database

http://mirtarbase.mbc.nctu.edu.tw

miRecords Manually curated
validated mirna target

database

http://mirecords.biolead.org

StarBase Sequence based miRNA

experiment database

http://starbase.sysu.edu.cn

DIANA-miRPath miRNA pathway analysis

http://www.microrna.gr/miRPathv2

miTalos miRNA signaling http://mips.helmholtz-muenchen.de/mitalos
pathway analysis
GeneTrail Gene set analysis tool http://genetrail.bioinf.uni-sb.de

105




miRGator Integrated system for http://mirgator.kobic.re.kr
functional investigation

of mMiRNASs
miR2Disease Database of miRNA http://www.mir2disease.org
related diseases
HMDD Database of miRNA http://202.38.126.151/hmdd/mirna/md
related diseases
PhenomiR Database of miRNA http://mips.helmholtz-muenchen.de/phenomir
related phenotypes
miRenvironment Database of validated http://202.38.126.151/hmdd/tools/miren.html

miRNA—environment
interactions

wapRNA RNA-Seq analysis http://waprna.big.ac.cn

DSAP RNA-Seq analysis http://dsap.cqu.edu.tw

miRanalyzer RNA-Seq analysis http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.ph
P

miRCat RNA-Seq analysis http://srna-tools.cmp.uea.ac.uk/animal/cgi-bin/srna-

tools.cgi?rm=input form&tool=mircat

miRBase: The microRNA Sequence Database

The miRBase Sequence database is the primary repository for published microRNA (miRNA)
sequence and annotation data. miRBase provides a user-friendly web interface for miRNA data,
allowing the user to search using key words or sequences, trace links to the primary literature
referencing the miRNA discoveries, analyze genomic coordinates and context, and mine
relationships between miRNA sequences. miRBase also provides a confidential gene-naming
service, assigning official mMiRNA names to novel genes before their publication. The methods
outlined in this chapter describe these functions. miRBase is freely available to all at
http://microrna.sanger.ac.uk/.

miRBase

miRBase: the microRNA database

miRBa

ed by the Grlffiths-Jones [ab at the Faculty of |ife Sciences, University of Manchester with funding from the BRSRC. miRBase was previously hosted and supported by the Wellcome Trust Sanger

It you make use of the data presented here, please cite the following articles in addition to the primary data sources:
Kozomara &, Grifiths-Jones 5.

nnatation and deep-sequencing data.

c2: tools
Griffiths-Jones 5, Saini

HK, van Dangen 5, Enright A)
NAR 2008 36:D154-D158
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Demonstration of miRNA ldentification and Target Prediction

Source of data: Transcriptome data and Small RNA sequencing.

To identity or predict the miRNA from any of the above-mentioned source data. However, with
advent of sequencing technology, the small-RNA sequencing data is more authenticate for miRNA
identification.

Computational pipeline for the identification of
miRNA and their targets

EST S
hd Blastn against
_l_> mirbase database
RNAseq data E
B
Filtration of f;
precursor miRNA _ =
' 4 N LS
Small RNA- ) “ § -
seq data Mfold for energy 2
and structure 3
b / | prediction =2
mirdeep2 " ' &
r N\ —  De novo assembly
Mapped on Maturebays
reference
genome
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Known
miRNA/novel

miRNA | _ Target O
\ identification

Fig. 1: workflow for the identification of miRNA and their targets

Annotation of
targeted
genes

Methodology:

Identification of miRNA from transcriptome data.

Step 1: Check the quality of the data and filter the low quality reads.

Step 2: To assemble the raw transcript into the contigs and check the quality of assembly.

Step 3: Homology method: search the homology between known miRNA sequence from miRbase
data base in the transcript with the parameters: e-value and word-length by using blastn program.

Step 4: Filters the blastn result based on similarity and e-value.
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Step 5: for the precursor miRNA (pre-miRNA) 100 upstream and 100 downstream sequences
along with aligned region retrieves as pre-cursor miRNA.

Step 6: to check the stability of secondary structure of pre-miRNA on the basis of MFE (minimum
fold energy), mfold program run and filter the stable pre-miRNA on the basis of MFE<-30
kcal/mol

Step 7: To find out the mature miRNA sequence on the stable pre-miRNA with MatureBayes
program.

Step 8: psRNAtarget server/miRanda is use for the target prediction of miRNA.
Step 9: Annotation of targeted genes of miRNA using various tools like DAVID, AgriGo.

Identification of MiIRNA from small-RNA seq data:

Step 1: Check the quality and pre-processes the reads. Filter the low-quality reads.

Step 2: Run mirdeep2/miRanalyzer for the identification of miRNA (both Raw reads and refence
genome is required).

Step 3: Run mfold the prediction of stable miRNA
Step 4: Identification of differentially expressed miRNA (statistically).

Step 5: Target identification of predicted miRNA using MIRANDA and psRNAtarget server for
animal and plant respectively.

Step 6: Functional annotation of targeted genes of miRNA using tools like DAVID, Agrigo,
Step 7: Study of gene regulatory network by cytoscape
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@ Disclaimer

The information contained in this reference manual has been taken from various web
resources. The information is provided by “ICAR-IASRI” and whilst we endeavor to keep the
information up-to-date and correct, we make no representations or warranties of any kind,
express or implied, about the completeness, accuracy, reliability, suitability or availability with
respect to the website or the information, products, services, or related graphics contained
in the reference manual for any purpose. Any reliance you place on such information is
therefore strictly at your own risk.

In no event will we be liable for any loss or damage including without limitation, indirect or
consequential loss or damage, or any loss or damage whatsoever arising from loss of data or
profits arise out of or in connection with the use of this manual. We have no control over the
nature, content and availability of those sites. The inclusion of any links does not necessarily
imply a recommendation or endorse the views expressed within them.
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